Math Problem Statement

Solve the recurrence relation π‘Žπ‘Ÿ+2 βˆ’ 5 π‘Žπ‘Ÿ+1 + 6 π‘Žπ‘Ÿ = 2 by the method of generating functions with initial conditions π‘Ž0 = 1 and π‘Ž1 = 2.

Solution

To solve the recurrence relation ar+2βˆ’5ar+1+6ar=2a_{r+2} - 5a_{r+1} + 6a_r = 2 using the method of generating functions, we follow these steps:

1. Define the Generating Function

Let the generating function be: A(x)=βˆ‘r=0∞arxr.A(x) = \sum_{r=0}^\infty a_r x^r.

2. Write the Recurrence Relation in Terms of Generating Functions

Multiply the recurrence relation ar+2βˆ’5ar+1+6ar=2a_{r+2} - 5a_{r+1} + 6a_r = 2 by xrx^r and sum over rβ‰₯0r \geq 0: βˆ‘r=0∞(ar+2xrβˆ’5ar+1xr+6arxr)=βˆ‘r=0∞2xr.\sum_{r=0}^\infty \left( a_{r+2}x^r - 5a_{r+1}x^r + 6a_r x^r \right) = \sum_{r=0}^\infty 2x^r.

3. Shift the Indices to Align Terms

  • For βˆ‘r=0∞ar+2xr\sum_{r=0}^\infty a_{r+2}x^r, substitute rβ†’rβˆ’2r \to r-2: βˆ‘r=0∞ar+2xr=x2βˆ‘r=0∞arxr=x2A(x).\sum_{r=0}^\infty a_{r+2}x^r = x^2 \sum_{r=0}^\infty a_r x^r = x^2 A(x).
  • For βˆ‘r=0∞ar+1xr\sum_{r=0}^\infty a_{r+1}x^r, substitute rβ†’rβˆ’1r \to r-1: βˆ‘r=0∞ar+1xr=xβˆ‘r=0∞arxr=xA(x).\sum_{r=0}^\infty a_{r+1}x^r = x \sum_{r=0}^\infty a_r x^r = x A(x).
  • The term βˆ‘r=0∞arxr=A(x)\sum_{r=0}^\infty a_r x^r = A(x) remains unchanged.

Substitute these shifts into the recurrence: x2A(x)βˆ’5xA(x)+6A(x)=21βˆ’x.x^2 A(x) - 5x A(x) + 6A(x) = \frac{2}{1-x}.

4. Factorize and Solve for A(x)A(x)

Group A(x)A(x): A(x)(x2βˆ’5x+6)=21βˆ’x.A(x) \left( x^2 - 5x + 6 \right) = \frac{2}{1-x}. Factorize x2βˆ’5x+6=(xβˆ’2)(xβˆ’3)x^2 - 5x + 6 = (x-2)(x-3): A(x)=2(1βˆ’x)(xβˆ’2)(xβˆ’3).A(x) = \frac{2}{(1-x)(x-2)(x-3)}.

5. Partial Fraction Decomposition

Decompose 2(1βˆ’x)(xβˆ’2)(xβˆ’3)\frac{2}{(1-x)(x-2)(x-3)}: 2(1βˆ’x)(xβˆ’2)(xβˆ’3)=A1βˆ’x+Bxβˆ’2+Cxβˆ’3.\frac{2}{(1-x)(x-2)(x-3)} = \frac{A}{1-x} + \frac{B}{x-2} + \frac{C}{x-3}. Multiply through by (1βˆ’x)(xβˆ’2)(xβˆ’3)(1-x)(x-2)(x-3) and solve for A,B,CA, B, C: 2=A(xβˆ’2)(xβˆ’3)+B(1βˆ’x)(xβˆ’3)+C(1βˆ’x)(xβˆ’2).2 = A(x-2)(x-3) + B(1-x)(x-3) + C(1-x)(x-2). Expanding and equating coefficients gives: A=βˆ’1, B=3, C=0.A = -1, \, B = 3, \, C = 0.

Thus: A(x)=βˆ’11βˆ’x+3xβˆ’2.A(x) = \frac{-1}{1-x} + \frac{3}{x-2}.

6. Expand into Power Series

Expand each term:

  • βˆ’11βˆ’x=βˆ’βˆ‘r=0∞xr\frac{-1}{1-x} = -\sum_{r=0}^\infty x^r.
  • ( \frac{3}{x-2

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Recurrence Relations
Generating Functions
Partial Fraction Decomposition

Formulas

Generating function A(x) = Ξ£(a_r * x^r)
Recurrence equation transformation: A(x)(x^2 - 5x + 6) = 2/(1-x)
Partial fraction decomposition: 2/((1-x)(x-2)(x-3))

Theorems

Method of Generating Functions
Properties of Power Series Expansion
Partial Fraction Decomposition Theorem

Suitable Grade Level

Undergraduate Mathematics or Advanced High School (Grade 11-12)