Math Problem Statement

1) Prove that: \( \frac{1}{\sqrt{1 + \frac{7}{\sqrt{1 + \sqrt{6400}}}}} = \frac{3}{4} \) 2) Prove that: \( \frac{\sqrt{3}}{\sqrt{3} + \sqrt{2}} = 3 - \sqrt{6} \) 3) Given \( A = 4 - 3\sqrt{5} \) and \( B = -1 + 2\sqrt{5} \), calculate: \( A + B \), \( A - B \), and \( A \cdot B \) 4) Factorize \( 9 + 4\sqrt{5} \), and simplify \( \sqrt{9 + 4\sqrt{5}} \) 5) Prove that: \( \frac{2}{\sqrt{3} - 1} + \frac{-2}{\sqrt{3} + 1} \) is a natural integer.

Solution

Let's go through each of the exercises from the image step by step.

1. Prove that:

\frac{1}{\sqrt{1 + \frac{7}{\sqrt{1 + \sqrt{6400}}}}}} = \frac{3}{4}

Solution:

First, simplify the inner part of the expression:

  • 6400=80\sqrt{6400} = 80, so: 1+6400=1+80=81=9\sqrt{1 + \sqrt{6400}} = \sqrt{1 + 80} = \sqrt{81} = 9
  • Next, we substitute this back into the equation: \frac{1}{\sqrt{1 + \frac{7}{9}}}}
  • The fraction simplifies to: 79, so the equation becomes 11+79=1169=143=34\frac{7}{9}, \text{ so the equation becomes } \frac{1}{\sqrt{1 + \frac{7}{9}}} = \frac{1}{\sqrt{\frac{16}{9}}} = \frac{1}{\frac{4}{3}} = \frac{3}{4} Thus, the equation is verified.

2. Prove that:

33+2=36\frac{\sqrt{3}}{\sqrt{3} + \sqrt{2}} = 3 - \sqrt{6}

Solution:

Multiply the numerator and denominator by 32\sqrt{3} - \sqrt{2} to rationalize the denominator: 33+23232=3(32)(3+2)(32)\frac{\sqrt{3}}{\sqrt{3} + \sqrt{2}} \cdot \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} (\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} The denominator becomes: (3)2(2)2=32=1(\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 So, the expression simplifies to: 3(32)=36\sqrt{3} (\sqrt{3} - \sqrt{2}) = 3 - \sqrt{6} Thus, the equation is verified.


3. Consider:

A=435A = 4 - 3\sqrt{5} and B=1+25B = -1 + 2\sqrt{5}

Calculations:

  • A+BA + B: A+B=(435)+(1+25)=4135+25=35A + B = (4 - 3\sqrt{5}) + (-1 + 2\sqrt{5}) = 4 - 1 - 3\sqrt{5} + 2\sqrt{5} = 3 - \sqrt{5}
  • ABA - B: AB=(435)(1+25)=4+13525=555A - B = (4 - 3\sqrt{5}) - (-1 + 2\sqrt{5}) = 4 + 1 - 3\sqrt{5} - 2\sqrt{5} = 5 - 5\sqrt{5}
  • ABA \cdot B: AB=(435)(1+25)=4(1)+4(25)35(1)+(35)(25)A \cdot B = (4 - 3\sqrt{5})(-1 + 2\sqrt{5}) = 4(-1) + 4(2\sqrt{5}) - 3\sqrt{5}(-1) + (-3\sqrt{5})(2\sqrt{5}) Simplifying each term: =4+85+356(5)=4+11530=34+115= -4 + 8\sqrt{5} + 3\sqrt{5} - 6(5) = -4 + 11\sqrt{5} - 30 = -34 + 11\sqrt{5}

4. Factorize 9+459 + 4\sqrt{5}, then deduce a simplification for 9+45\sqrt{9 + 4\sqrt{5}}.

We recognize that 9+459 + 4\sqrt{5} can be written as a binomial squared: 9+45=(5+2)29 + 4\sqrt{5} = \left( \sqrt{5} + 2 \right)^2 So: 9+45=(5+2)2=5+2\sqrt{9 + 4\sqrt{5}} = \sqrt{\left( \sqrt{5} + 2 \right)^2} = \sqrt{5} + 2


5. Prove that:

231+23+1\frac{2}{\sqrt{3} - 1} + \frac{-2}{\sqrt{3} + 1} is an integer.

Solution:

First, simplify each term by rationalizing the denominators. For the first term: 2313+13+1=2(3+1)(3)212=2(3+1)31=2(3+1)2=3+1\frac{2}{\sqrt{3} - 1} \cdot \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{2(\sqrt{3} + 1)}{(\sqrt{3})^2 - 1^2} = \frac{2(\sqrt{3} + 1)}{3 - 1} = \frac{2(\sqrt{3} + 1)}{2} = \sqrt{3} + 1 For the second term: 23+13131=2(31)(3)212=2(31)2=(31)=3+1\frac{-2}{\sqrt{3} + 1} \cdot \frac{\sqrt{3} - 1}{\sqrt{3} - 1} = \frac{-2(\sqrt{3} - 1)}{(\sqrt{3})^2 - 1^2} = \frac{-2(\sqrt{3} - 1)}{2} = -(\sqrt{3} - 1) = -\sqrt{3} + 1 Now, adding the two expressions: (3+1)+(3+1)=2(\sqrt{3} + 1) + (-\sqrt{3} + 1) = 2 Thus, the result is the integer 2.


Would you like more details on any of these solutions?

Related questions:

  1. How can you solve similar rationalization problems involving square roots?
  2. Can you generalize the technique used in question 5 for any similar pair of fractions?
  3. How can you determine when a binomial is a perfect square, as in question 4?
  4. What is the significance of simplifying expressions with irrational numbers?
  5. How can you approach problems involving expressions with nested square roots?

Tip:

When simplifying radical expressions, rationalizing the denominator can help make the operations clearer and easier to handle.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Radicals
Rationalization
Factorization

Formulas

\( \frac{a}{b + c} \) rationalization by multiplying numerator and denominator by \( b - c \)
Difference of squares: \( a^2 - b^2 = (a - b)(a + b) \)

Theorems

Rationalization of radicals
Difference of squares

Suitable Grade Level

Grades 9-12