Math Problem Statement

(x + 3)^2 - 15 = 0

Solution

The given equation is:

(x+3)215=0(x + 3)^2 - 15 = 0

Solution:

  1. Isolate the squared term
    (x+3)2=15(x + 3)^2 = 15

  2. Take the square root on both sides
    x+3=±15x + 3 = \pm\sqrt{15}

  3. Solve for xx
    x=3±15x = -3 \pm \sqrt{15}

Final Answer:

x=3+15,x=315x = -3 + \sqrt{15}, \quad x = -3 - \sqrt{15}

Would you like a step-by-step explanation in more detail?

Related Questions:

  1. How do you solve quadratic equations using the square root method?
  2. What is the approximate decimal value of 15\sqrt{15}?
  3. How do you check if your solutions are correct?
  4. What other methods can be used to solve quadratic equations?
  5. What are the real-world applications of solving quadratic equations?

Tip:

When solving equations with squares, always consider both the positive and negative square roots!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Equations
Square Roots

Formulas

(x + a)^2 = b
x = -a ± √b

Theorems

Square Root Property of Equations

Suitable Grade Level

Grades 8-10