Math Problem Statement

225=(61z²×793)-(4z+1)²

Solution

We are given the equation:

225=(61z2×793)(4z+1)2225 = (61z^2 \times 793) - (4z + 1)^2

Let's solve for zz:

Step 1: Simplify the expression

Expand both sides of the equation.

225=61z2×793(4z+1)2225 = 61z^2 \times 793 - (4z + 1)^2

  1. First, simplify 61z2×79361z^2 \times 793:

61z2×793=48373z261z^2 \times 793 = 48373z^2

  1. Now expand (4z+1)2(4z + 1)^2:

(4z+1)2=(4z)2+2(4z)(1)+12=16z2+8z+1(4z + 1)^2 = (4z)^2 + 2(4z)(1) + 1^2 = 16z^2 + 8z + 1

Thus, the equation becomes:

225=48373z2(16z2+8z+1)225 = 48373z^2 - (16z^2 + 8z + 1)

Step 2: Simplify further

Now distribute the negative sign:

225=48373z216z28z1225 = 48373z^2 - 16z^2 - 8z - 1

Simplify the z2z^2 terms:

225=(48373z216z2)8z1225 = (48373z^2 - 16z^2) - 8z - 1

225=48357z28z1225 = 48357z^2 - 8z - 1

Step 3: Move all terms to one side

Move all terms to one side of the equation:

48357z28z1225=048357z^2 - 8z - 1 - 225 = 0

Simplify:

48357z28z226=048357z^2 - 8z - 226 = 0

Step 4: Solve using the quadratic formula

The quadratic formula is:

z=b±b24ac2az = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

For the equation 48357z28z226=048357z^2 - 8z - 226 = 0, we have:

  • a=48357a = 48357
  • b=8b = -8
  • c=226c = -226

Now, apply the quadratic formula:

z=(8)±(8)24(48357)(226)2(48357)z = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(48357)(-226)}}{2(48357)}

Simplify the discriminant:

z=8±64+4×48357×2262×48357z = \frac{8 \pm \sqrt{64 + 4 \times 48357 \times 226}}{2 \times 48357}

z=8±64+4373354496714z = \frac{8 \pm \sqrt{64 + 43733544}}{96714}

z=8±4373360896714z = \frac{8 \pm \sqrt{43733608}}{96714}

z=8±6614.6496714z = \frac{8 \pm 6614.64}{96714}

Step 5: Solve for both roots

  1. z1=8+6614.6496714=6622.64967140.0685z_1 = \frac{8 + 6614.64}{96714} = \frac{6622.64}{96714} \approx 0.0685
  2. z2=86614.6496714=6606.64967140.0683z_2 = \frac{8 - 6614.64}{96714} = \frac{-6606.64}{96714} \approx -0.0683

Thus, the two solutions are approximately:

z0.0685orz0.0683z \approx 0.0685 \quad \text{or} \quad z \approx -0.0683

Would you like further details on any step or explanations?

Here are 5 related questions for further exploration:

  1. How does the quadratic formula work and why is it useful?
  2. What are the steps for solving equations with squared terms?
  3. Can this method be used to solve any quadratic equation?
  4. How does the discriminant determine the nature of solutions?
  5. What are the applications of quadratic equations in real-world problems?

Tip: Always check the discriminant (b24acb^2 - 4ac) before applying the quadratic formula. It tells you if the solutions are real or complex.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Equations
Expanding Expressions

Formulas

Quadratic equation formula: ax^2 + bx + c = 0
Quadratic formula: z = (-b ± √(b^2 - 4ac)) / 2a

Theorems

Quadratic Formula

Suitable Grade Level

Grades 9-11