Math Problem Statement

Given the matrices AA and BB shown below, solve for XX in the equation 3, X, minus, one third, A, equals, B, .3X− 3 1 ​ A=B. A, equals, open square bracket, begin matrix row 1, column 1, minus, 3 row 1, column 2, minus, 6 row 2, column 1, minus, 3 row 2, column 2, minus, 9 end matrix , close square bracket, B, equals, open square bracket, begin matrix row 1, column 1, 7 row 1, column 2, 4 row 2, column 1, 9 row 2, column 2, 9 end matrix , close square bracket A=[ −3 −3 ​

−6 −9 ​ ]B=[ 7 9 ​

4 9 ​ ]

Solution

We are solving for XX in the matrix equation:

3X13A=B3X - \frac{1}{3}A = B

Step 1: Rearrange the equation

Isolate 3X3X: 3X=B+13A3X = B + \frac{1}{3}A

Divide through by 3 to solve for XX: X=13(B+13A)X = \frac{1}{3}(B + \frac{1}{3}A)

Step 2: Substitute the given matrices

The matrices AA and BB are: A=[3639],B=[7499]A = \begin{bmatrix} -3 & -6 \\ -3 & -9 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & 4 \\ 9 & 9 \end{bmatrix}

First, compute 13A\frac{1}{3}A: 13A=13[3639]=[1213]\frac{1}{3}A = \frac{1}{3} \begin{bmatrix} -3 & -6 \\ -3 & -9 \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ -1 & -3 \end{bmatrix}

Now, add BB and 13A\frac{1}{3}A: B+13A=[7499]+[1213]=[6286]B + \frac{1}{3}A = \begin{bmatrix} 7 & 4 \\ 9 & 9 \end{bmatrix} + \begin{bmatrix} -1 & -2 \\ -1 & -3 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 8 & 6 \end{bmatrix}

Finally, divide by 3 to find XX: X=13[6286]=[223832]X = \frac{1}{3} \begin{bmatrix} 6 & 2 \\ 8 & 6 \end{bmatrix} = \begin{bmatrix} 2 & \frac{2}{3} \\ \frac{8}{3} & 2 \end{bmatrix}

Final Answer:

X=[223832]X = \begin{bmatrix} 2 & \frac{2}{3} \\ \frac{8}{3} & 2 \end{bmatrix}


Would you like a breakdown of each calculation or more details on the steps? Here are 5 related questions to explore further:

  1. How can we verify the solution of a matrix equation?
  2. What are the rules for scalar multiplication and addition in matrices?
  3. Can this approach be generalized for non-square matrices AA and BB?
  4. How does matrix division differ from scalar division in solving equations?
  5. How would the solution change if AA or BB were singular matrices?

Tip: Always double-check matrix dimensions to ensure that addition, subtraction, and multiplication operations are valid.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Matrix Operations
Linear Equations
Scalar Multiplication

Formulas

3X - (1/3)A = B
X = (1/3)(B + (1/3)A)

Theorems

Matrix Addition
Scalar Multiplication of Matrices

Suitable Grade Level

Grades 10-12