Math Problem Statement

Tentukan nilai dari log 15 + log 5 - log 3 menggunakan sifat 1,3,4, dan 5.

Solution

The image contains two logarithmic problems written in Indonesian. I will translate and solve them:

Problem 2: "Tentukan nilai dari 5log15+5log55log3^5\log 15 + ^5\log 5 - ^5\log 3 menggunakan sifat 1, 3, 4, dan 5."

Translation: Find the value of log515+log55log53\log_5{15} + \log_5{5} - \log_5{3} using properties 1, 3, 4, and 5.

Solution: Using logarithmic properties:

  1. Property 1 (Product rule):
    logb(xy)=logbx+logby\log_b(xy) = \log_b{x} + \log_b{y}

  2. Property 2 (Quotient rule):
    logbxy=logbxlogby\log_b{\frac{x}{y}} = \log_b{x} - \log_b{y}

Now, simplifying:

log515+log55log53\log_5{15} + \log_5{5} - \log_5{3}

Step 1: log515=log5(3×5)=log53+log55\log_5{15} = \log_5{(3 \times 5)} = \log_5{3} + \log_5{5}

Step 2: Substitute this into the original expression:

(log53+log55)+log55log53(\log_5{3} + \log_5{5}) + \log_5{5} - \log_5{3}

Step 3: Simplify:

log53+log55+log55log53\log_5{3} + \log_5{5} + \log_5{5} - \log_5{3}

The log53\log_5{3}'s cancel out, leaving:

log55+log55\log_5{5} + \log_5{5}

Step 4: We know that log55=1\log_5{5} = 1, so:

1+1=21 + 1 = 2

Answer for Problem 2: The value is 22.


Problem 3: "Tentukan nilai dari 7log35log499log25^7\log 3 \cdot ^5\log 49 \cdot ^9\log 25 menggunakan sifat 1, 5, dan 9."

Translation: Find the value of log73log549log925\log_7{3} \cdot \log_5{49} \cdot \log_9{25} using properties 1, 5, and 9.

Solution: This involves three logarithmic terms. We'll need to break these down and simplify where possible.

  1. Logarithmic form of powers:
    Use logbxk=klogbx\log_b{x^k} = k \log_b{x}

Let's break down each logarithm:

log73,log549=log5(72)=2log57,log925=log9(52)=2log95\log_7{3}, \quad \log_5{49} = \log_5{(7^2)} = 2 \log_5{7}, \quad \log_9{25} = \log_9{(5^2)} = 2 \log_9{5}

So the expression becomes:

log732log572log95\log_7{3} \cdot 2 \log_5{7} \cdot 2 \log_9{5}

Now, without specific values for log73\log_7{3}, log57\log_5{7}, and log95\log_9{5}, we can't simplify this further arithmetically without a calculator. However, this is the most simplified form using the logarithmic properties given.

Answer for Problem 3: The simplified expression is:

2log732log57log952 \log_7{3} \cdot 2 \log_5{7} \cdot \log_9{5}


Would you like any further details on these solutions or clarifications on logarithmic properties?

Related Questions:

  1. How do you apply the change of base formula to logarithmic expressions?
  2. What is the logarithmic property for powers, and how can it simplify calculations?
  3. How does the quotient rule for logarithms work?
  4. Can you explain how to calculate the values of log73\log_7{3}, log57\log_5{7}, and log95\log_9{5} using a calculator?
  5. How can the product and quotient rules for logarithms be combined to solve more complex problems?

Tip:

Always try to simplify logarithmic expressions by applying the basic properties (product, quotient, and power rules) before calculating specific values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Logarithmic Properties

Formulas

Product rule: log_b(x * y) = log_b(x) + log_b(y)
Quotient rule: log_b(x / y) = log_b(x) - log_b(y)
Power rule: log_b(x^k) = k * log_b(x)

Theorems

Basic properties of logarithms

Suitable Grade Level

Grades 10-12