Math Problem Statement

Nilai dari \(\frac{2^{5\log\frac{1}{5}} + 9^{\log3}}{9^{\log3} \times 3^{\log3}}\) adalah ....

Solution

The given expression is:

25log15+9log39log3×3log3\frac{2^{5\log \frac{1}{5}} + 9^{\log 3}}{9^{\log 3} \times 3^{\log 3}}

Let's break this down step-by-step:

Step 1: Simplify 25log152^{5 \log \frac{1}{5}}

We can use the property of logarithms alogbc=clogbaa^{\log_b c} = c^{\log_b a}.

Here, 25log15=(15)log25=(15)log32=(15)5log22^{5 \log \frac{1}{5}} = \left( \frac{1}{5} \right)^{\log 2^5} = \left( \frac{1}{5} \right)^{\log 32} = \left( \frac{1}{5} \right)^{5 \log 2}.

So, it becomes 32log5=55log232^{\log 5} = 5^{-5 \log 2}.

Step 2: Simplify 9log39^{\log 3}

Using the property alogbc=clogbaa^{\log_b c} = c^{\log_b a}, we get: 9log3=(32)log3=32log3=329^{\log 3} = (3^2)^{\log 3} = 3^{2 \log 3} = 3^{2}

Step 3: Simplify 3log33^{\log 3}

[ 3^{\log 3} = 3^1 =1 The full solution is:

loglog

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Logarithms

Formulas

a^{\log_b c} = c^{\log_b a}
\log_b b = 1

Theorems

Logarithmic identities
Exponentiation rules

Suitable Grade Level

Grades 11-12