Math Problem Statement

1. Hitung limit untuk beberapa fungsi. 2. Hitung limit dengan pecahan. 3. Cari transpose dari matriks A. 4. Hitung limit dengan akar. 5. Temukan turunan pertama (dy/dx) untuk berbagai fungsi y. 6. Lakukan perkalian matriks untuk matriks A dan matriks B.

Solution

Thank you for uploading the image! I will analyze and solve the mathematical problems step-by-step. Here's the breakdown of the problems:


1. Limit Calculations

a. limx2(3x2x8)\text{a. } \lim_{x \to 2} (3x^2 - x - 8)
b. limx1(3x3x6)\text{b. } \lim_{x \to -1} (3x^3 - x - 6)


2. Limit Calculations with Fractions

a. limn2x22x15x+3\text{a. } \lim_{n \to 2} \frac{x^2 - 2x - 15}{x + 3}
b. limn1x33x13x+1\text{b. } \lim_{n \to -1} \frac{x^3 - 3x - 13}{x + 1}


3. Transpose of Matrix

Matrix A=[230314]A = \begin{bmatrix} 2 & 3 & 0 \\ 3 & -1 & 4 \end{bmatrix}, find ATA^T.


4. Limit with Roots

a. limx215x1\text{a. } \lim_{x \to 2} \sqrt{\frac{1}{5x - 1}}
b. limx215x6\text{b. } \lim_{x \to 2} \sqrt{\frac{1}{5x - 6}}


5. Derivatives

a. If y=3x2x, find dydx.\text{a. If } y = 3x^2 - x, \text{ find } \frac{dy}{dx}.
b. If y=3x2+x3, find dydx.\text{b. If } y = 3x^2 + x^3, \text{ find } \frac{dy}{dx}.
c. If y=4x2x2, find dydx.\text{c. If } y = 4x^2 \cdot x^2, \text{ find } \frac{dy}{dx}.


6. Matrix Multiplication

Matrix A=[121301]A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 1 \end{bmatrix}
Matrix B=[314210]B = \begin{bmatrix} 3 & 1 & 4 \\ 2 & 1 & 0 \end{bmatrix},
find A×BA \times B.


Would you like a full solution to each question or focus on any specific section? Let me know!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits in Calculus
Matrix Transposition
Derivative Calculation
Matrix Multiplication

Formulas

Limit laws: \( \lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) \)
Derivative formula: \( \frac{dy}{dx} \)
Matrix multiplication: \( C_{ij} = \sum_{k=1}^n A_{ik} B_{kj} \)

Theorems

Properties of limits
Product rule for differentiation
Matrix multiplication rules

Suitable Grade Level

Grades 10-12