Math Problem Statement

Untuk soal nomor 1 sampai dengan 11 diketahui f(x) = (x + 1) / (x - 1) dan g(x) = sqrt(x) - 2 tentukan nilai-nilai dari fungsi dan komposisi fungsi berikut ini jika memungkinkan.

Solution

The image contains a list of mathematical problems related to functions and their compositions. The functions f(x)f(x) and g(x)g(x) are defined as:

  • f(x)=x+1x1f(x) = \frac{x + 1}{x - 1}
  • g(x)=x2g(x) = \sqrt{x} - 2

The questions ask to determine the values of the following operations, including inverse functions and compositions:

  1. f1(2)f^{-1}(2)
  2. g1(2)g^{-1}(2)
  3. g1(1)g^{-1}(1)
  4. f1(1)f^{-1}(1)
  5. (fg)(2)(f \circ g)(2)
  6. (gf)(2)(g \circ f)(2)
  7. (fg)1(2)(f \circ g)^{-1}(2)
  8. (gf)1(2)(g \circ f)^{-1}(2)
  9. Given h(x)=(x1)3h(x) = (x-1)^3 and h(x)=fgh(x) = f \circ g, determine ff and gg.
  10. Given h(x)=xx2+1h(x) = \frac{x}{x^2 + 1} and h(x)=fgh(x) = f \circ g, determine ff and gg.
  11. Given h(x)=(x3)3h(x) = (x-3)^3 and h(x)=fgh(x) = f \circ g, determine ff and gg.

Would you like me to begin solving these step by step?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Inverse functions
Function composition
Square roots
Algebraic manipulation

Formulas

f(x) = (x + 1) / (x - 1)
g(x) = sqrt(x) - 2
f^-1(x) and g^-1(x) formulas
Composition of functions f(g(x)) and g(f(x))

Theorems

Inverse function theorem
Function composition properties

Suitable Grade Level

Grades 10-12