Math Problem Statement

∫ from 0 to t of u * cos^2(u) du

Solution

The integral you provided is:

0tucos2(u)du.\int_0^t u \cos^2(u) \, du.

To solve this, we can apply a strategy to simplify the integrand. First, recall the trigonometric identity:

cos2(u)=1+cos(2u)2.\cos^2(u) = \frac{1 + \cos(2u)}{2}.

Using this identity, the integral becomes:

0tucos2(u)du=0tu1+cos(2u)2du=120tu(1+cos(2u))du.\int_0^t u \cos^2(u) \, du = \int_0^t u \cdot \frac{1 + \cos(2u)}{2} \, du = \frac{1}{2} \int_0^t u (1 + \cos(2u)) \, du.

We now split the integral:

120tu(1+cos(2u))du=12(0tudu+0tucos(2u)du).\frac{1}{2} \int_0^t u (1 + \cos(2u)) \, du = \frac{1}{2} \left( \int_0^t u \, du + \int_0^t u \cos(2u) \, du \right).

First Integral:

0tudu=u220t=t22.\int_0^t u \, du = \frac{u^2}{2} \Big|_0^t = \frac{t^2}{2}.

Second Integral:

For 0tucos(2u)du\int_0^t u \cos(2u) \, du, we can use integration by parts. Let:

  • v=uv = u, so dv=dudv = du,
  • dw=cos(2u)dudw = \cos(2u) \, du, so w=sin(2u)2w = \frac{\sin(2u)}{2}.

Thus, using the integration by parts formula vdw=vwwdv\int v \, dw = v w - \int w \, dv:

ucos(2u)du=usin(2u)212sin(2u)du.\int u \cos(2u) \, du = \frac{u \sin(2u)}{2} - \frac{1}{2} \int \sin(2u) \, du.

Now, the remaining integral is:

sin(2u)du=cos(2u)2.\int \sin(2u) \, du = -\frac{\cos(2u)}{2}.

So, the full expression becomes:

ucos(2u)du=usin(2u)2+cos(2u)4.\int u \cos(2u) \, du = \frac{u \sin(2u)}{2} + \frac{\cos(2u)}{4}.

Evaluating from 00 to tt, we get:

0tucos(2u)du=tsin(2t)2+cos(2t)4(0+14)=tsin(2t)2+cos(2t)414.\int_0^t u \cos(2u) \, du = \frac{t \sin(2t)}{2} + \frac{\cos(2t)}{4} - \left( 0 + \frac{1}{4} \right) = \frac{t \sin(2t)}{2} + \frac{\cos(2t)}{4} - \frac{1}{4}.

Final Result:

Now, summing both parts:

12(t22+tsin(2t)2+cos(2t)414).\frac{1}{2} \left( \frac{t^2}{2} + \frac{t \sin(2t)}{2} + \frac{\cos(2t)}{4} - \frac{1}{4} \right).

Simplifying this expression:

t24+tsin(2t)4+cos(2t)818.\frac{t^2}{4} + \frac{t \sin(2t)}{4} + \frac{\cos(2t)}{8} - \frac{1}{8}.

Thus, the value of the integral is:

0tucos2(u)du=t24+tsin(2t)4+cos(2t)818.\int_0^t u \cos^2(u) \, du = \frac{t^2}{4} + \frac{t \sin(2t)}{4} + \frac{\cos(2t)}{8} - \frac{1}{8}.

Would you like further details or have any questions? Here are some related questions for practice:

  1. How does the trigonometric identity for cos2(u)\cos^2(u) simplify integrals?
  2. Can you explain the steps involved in applying integration by parts to this problem?
  3. What are the general techniques for solving integrals involving products of functions?
  4. How would the result change if the limits of integration were different?
  5. What are the applications of integrals involving trigonometric functions in physics or engineering?

Tip: Always check if a trigonometric identity can simplify the integrand before proceeding with more advanced techniques like integration by parts.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Identities
Integration by Parts

Formulas

∫ u * cos^2(u) du
cos^2(u) = (1 + cos(2u)) / 2
Integration by Parts: ∫ v dw = v w - ∫ w dv

Theorems

Trigonometric Identity for cos^2
Integration by Parts

Suitable Grade Level

University-level Calculus