Math Problem Statement

solve the integral (3x2+x+23)/((x−4)(x2+9))dx

Solution

To solve the integral:

I=3x2+x+23(x4)(x2+9)dxI = \int \frac{3x^2 + x + 23}{(x - 4)(x^2 + 9)} \, dx

Step 1: Perform partial fraction decomposition

We seek to express the integrand in the form:

3x2+x+23(x4)(x2+9)=Ax4+Bx+Cx2+9\frac{3x^2 + x + 23}{(x - 4)(x^2 + 9)} = \frac{A}{x - 4} + \frac{Bx + C}{x^2 + 9}

Multiplying both sides by (x4)(x2+9)(x - 4)(x^2 + 9) gives:

3x2+x+23=A(x2+9)+(Bx+C)(x4)3x^2 + x + 23 = A(x^2 + 9) + (Bx + C)(x - 4)

Step 2: Expand and collect terms

Expand A(x2+9)A(x^2 + 9)

A(x2+9)=Ax2+9AA(x^2 + 9) = Ax^2 + 9A

Expand (Bx+C)(x4)(Bx + C)(x - 4)

(Bx+C)(x4)=Bx24Bx+Cx4C(Bx + C)(x - 4) = Bx^2 - 4Bx + Cx - 4C

Now combine all terms:

3x2+x+23=Ax2+9A+Bx24Bx+Cx4C3x^2 + x + 23 = Ax^2 + 9A + Bx^2 - 4Bx + Cx - 4C

Group terms by powers of xx:

(A+B)x2+(4B+C)x+(9A4C)=3x2+x+23( A + B )x^2 + ( -4B + C )x + ( 9A - 4C ) = 3x^2 + x + 23

Step 3: Solve for coefficients

Coefficient of x2x^2

A + B = 3 \tag{1}

Coefficient of xx

-4B + C = 1 \tag{2}

Constant term

9A - 4C = 23 \tag{3}

Solve this system of equations:

From Equation (1)

B=3AB = 3 - A

Substitute into Equation (2)

-4(3 - A) + C = 1 \implies -12 + 4A + C = 1 \implies C = 13 - 4A \tag{4}

Substitute B=3AB = 3 - A and C=134AC = 13 - 4A into Equation (3)

9A4(134A)=239A - 4(13 - 4A) = 23

Simplify:

9A52+16A=23    25A=75    A=39A - 52 + 16A = 23 \implies 25A = 75 \implies A = 3

Find BB and CC

B=3A=0andC=134(3)=1B = 3 - A = 0 \quad \text{and} \quad C = 13 - 4(3) = 1

Thus, the decomposition becomes:

3x2+x+23(x4)(x2+9)=3x4+x+1x2+9\frac{3x^2 + x + 23}{(x - 4)(x^2 + 9)} = \frac{3}{x - 4} + \frac{x + 1}{x^2 + 9}


Step 4: Integrate each term

Integral of 3x4\frac{3}{x - 4}

3x4dx=3lnx4\int \frac{3}{x - 4} \, dx = 3 \ln|x - 4|

Integral of xx2+9\frac{x}{x^2 + 9}

Let u=x2+9u = x^2 + 9, so du=2xdxdu = 2x dx. Therefore,

xx2+9dx=12lnx2+9\int \frac{x}{x^2 + 9} dx = \frac{1}{2} \ln|x^2 + 9|

Integral of 1x2+9\frac{1}{x^2 + 9}

This is a standard integral:

1x2+9dx=13arctan(x3)\int \frac{1}{x^2 + 9} dx = \frac{1}{3} \arctan\left(\frac{x}{3}\right)


Step 5: Combine results

I=3lnx4+12lnx2+9+13arctan(x3)+CI = 3 \ln|x - 4| + \frac{1}{2} \ln|x^2 + 9| + \frac{1}{3} \arctan\left(\frac{x}{3}\right) + C


Would you like more details or clarifications on any step? 😊

Related Questions

  1. How does partial fraction decomposition work for repeated roots?
  2. Can we use substitution instead of partial fractions here?
  3. What are the geometric interpretations of logarithmic and arctan integrals?
  4. How does the arctan function relate to trigonometry in integrals?
  5. What are common mistakes in solving rational function integrals?

Tip:

Always double-check coefficient matching carefully when solving partial fraction decompositions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Partial Fraction Decomposition
Logarithmic Integrals
Inverse Trigonometric Functions

Formulas

Integral of 1/(x - a) = ln|x - a|
Integral of 1/(x^2 + a^2) = (1/a) * arctan(x/a)

Theorems

Partial Fraction Decomposition
Integration of Rational Functions

Suitable Grade Level

College/University