Math Problem Statement
The given economy can be defined by the following system of equations with the final demand matrix (\mathbf{d}):
[ \begin{array}{ c|c c c |c } & \text{Agriculture} & \text{Manufactures} & \text{Services} & \text{Total} \ \hline \text{Agriculture} & 60 & 180 & 0 & 120 \ \text{Manufactures} & 30 & 60 & 30 & 180 \ \text{Services} & 0 & 40 & 10 & 100 \ \text{Final Demand} & 150 & 160 & 180 & \end{array} ]
First, let's form the input-output matrix (\mathbf{C}):
[ C = \begin{pmatrix} 0.30 & 0.60 & 0.00 \ 0.15 & 0.20 & 0.05 \ 0.00 & 0.27 & 0.05 \end{pmatrix} ]
Now define the vector of total outputs (\mathbf{x}) and the vector of final demands (\mathbf{d}):
[ \mathbf{x} = \begin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix}, \quad \mathbf{d} = \begin{pmatrix} 150 \ 160 \ 180 \end{pmatrix} ]
The system of equations to solve is:
[ \mathbf{x} = \mathbf{C}\mathbf{x} + \mathbf{d} ]
This can be rewritten as:
[ (\mathbf{I} - \mathbf{C})\mathbf{x} = \mathbf{d} ]
[ \mathbf{I} - \mathbf{C} = \begin{pmatrix} 1 - 0.30 & -0.60 & 0.00 \ -0.15 & 1 - 0.20 & -0.05 \ 0.00 & -0.27 & 1 - 0.05 \end{pmatrix}
\begin{pmatrix} 0.70 & -0.60 & 0.00 \ -0.15 & 0.80 & -0.05 \ 0.00 & -0.27 & 0.95 \end{pmatrix} ]
Now solve for (\mathbf{x}):
[ \begin{pmatrix} 0.70 & -0.60 & 0.00 \ -0.15 & 0.80 & -0.05 \ 0.00 & -0.27 & 0.95 \end{pmatrix} \begin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix}
\begin{pmatrix} 150 \ 160 \ 180 \end{pmatrix} ]
By performing Gaussian elimination or using matrix inversion for ((\mathbf{I} - \mathbf{C})^{-1}) to solve for (\mathbf{x}):
[ (\mathbf{I} - \mathbf{C})^{-1} \approx \begin{pmatrix} 1.66071 & 1.25607 & 0.06690 \ 0.16677 & 1.33915 & 0.07057 \ 0.07986 & 0.35041 & 1.03829 \end{pmatrix} ]
Now multiplying the inversed matrix with the final demand vector (\mathbf{d}):
[ \mathbf{x} = \begin{pmatrix} 1.66071 & 1.25607 & 0.06690 \ 0.16677 & 1.33915 & 0.07057 \ 0.07986 & 0.35041 & 1.03829 \end{pmatrix} \begin{pmatrix} 150 \ 160 \ 180 \end{pmatrix} ]
[ = \begin{pmatrix} 1.66071 \cdot 150 + 1.25607 \cdot 160 + 0.06690 \cdot 180 \ 0.16677 \cdot 150 + 1.33915 \cdot 160 + 0.07057 \cdot 180 \ 0.07986 \cdot 150 + 0.35041 \cdot 160 + 1.03829 \cdot 180 \end{pmatrix} ]
[ = \begin{pmatrix} 249.1075 + 200.9712 + 12.0420 \ 25.0155 + 214.2639 + 12.7038 \ 11.9790 + 56.0656 + 186.8882 \end{pmatrix} ]
[ \approx \begin{pmatrix} 396.14 \ 300.13 \ 235.75 \end{pmatrix} ]
Thus, the new output levels are approximately:
- Agriculture: (396.14)
- Manufactures: (300.13)
- Services: (235.75)
Solution
Your calculations for the output levels based on the input-output matrix are detailed and generally correct. Let's summarize the results and outline the steps:
Problem Recap
You are given an economy characterized by an input-output matrix , and you need to find the vector of total outputs that satisfies the system:
This can be rewritten as:
where:
- is the identity matrix.
- is the vector of final demands.
- is the vector of total outputs.
Calculation Steps
- Form the Matrix :
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Algebra
Matrix Operations
Gaussian Elimination
Formulas
Matrix multiplication
Matrix inversion
Theorems
Properties of Inverse Matrices
Suitable Grade Level
Advanced College
Related Recommendation
Input-Output Analysis for Sector Output Calculation in an Economy
Solve Linear System for Economy with Three Sectors: Agriculture, Manufacturing, and Energy
Solving Economic Production Level Using Inverse Matrix Method
Input-Output Model Solution for Agriculture and Energy Sectors
Solving Systems of Linear Equations with Transaction Matrices