Math Problem Statement

For items 6 – 10, find the specified term of the following geometric sequences. 6.) 3, 6, 12, … find a7 7.) 10, 5, 5 2 , … find a6 8.) 1, 3, 9, … find a9 9.) 2, – 1 , 1 2 , … find a10 10.) 100, 20, 4, … find a8 For items 11 – 15, insert geometric means in each geometric sequence. 11.) 3, ____, 8 12.) 3 2 , _____, 3 8 13.) 7, _____, _____, 56 14.) 36, _____, _____, _____, 9 64 15.) – 1, _____, – 9 , _____, – 81

ASSESSMENT 1. FIND OUT! Find the specified term of each of the given geometric sequences. Show your complete solutions. 1.) 3, 6, 12, … 𝑎7 2.) 18, 6, 2, … 𝑎9 3.) 1, 1 2 , 1 4 , … 𝑎7

ASSESSMENT 1: HALFWAY Find the geometric mean of the given extremes. Given Geometric Mean

  1. 3 and 8
  2. 100 and 25
  3. 1 2 and 1 8
  4. 3 and 1 3
  5. x and x7 ASSESSMENT 2. IN BETWEEN Insert geometric means in each geometric sequence. 1.) 2, _____, _____, 686 2.) _____, 24, _____, _____, 3 64 3.) _____, _____, _____, 4, 8 4.) _____, 1 4 , 1 2 , _____ 5.) 81, _____, _____, _____, _____, 1

Solution

Let's break this down step by step:

Items 6 – 10: Finding the Specified Term of a Geometric Sequence

For each geometric sequence, the nth term can be found using the formula:

an=a1×r(n1)a_n = a_1 \times r^{(n-1)}

Where:

  • ana_n is the nth term.
  • a1a_1 is the first term.
  • rr is the common ratio.
  • nn is the term number.

Let's solve each problem.

6. Sequence: 3, 6, 12, … Find a7a_7

  • a1=3a_1 = 3
  • r=63=2r = \frac{6}{3} = 2
  • n=7n = 7

a7=3×2(71)=3×26=3×64=192a_7 = 3 \times 2^{(7-1)} = 3 \times 2^6 = 3 \times 64 = 192

Answer: a7=192a_7 = 192

7. Sequence: 10, 5, 52\frac{5}{2}, … Find a6a_6

  • a1=10a_1 = 10
  • r=510=12r = \frac{5}{10} = \frac{1}{2}
  • n=6n = 6

a6=10×(12)(61)=10×(12)5=10×132=1032=516a_6 = 10 \times \left(\frac{1}{2}\right)^{(6-1)} = 10 \times \left(\frac{1}{2}\right)^5 = 10 \times \frac{1}{32} = \frac{10}{32} = \frac{5}{16}

Answer: a6=516a_6 = \frac{5}{16}

8. Sequence: 1, 3, 9, … Find a9a_9

  • a1=1a_1 = 1
  • r=31=3r = \frac{3}{1} = 3
  • n=9n = 9

a9=1×3(91)=38=6561a_9 = 1 \times 3^{(9-1)} = 3^8 = 6561

Answer: a9=6561a_9 = 6561

9. Sequence: 2, –1, 12\frac{1}{2}, … Find a10a_{10}

  • a1=2a_1 = 2
  • r=12=12r = \frac{-1}{2} = -\frac{1}{2}
  • n=10n = 10

a10=2×(12)(101)=2×(12)9=2×1512=2512=1256a_{10} = 2 \times \left(-\frac{1}{2}\right)^{(10-1)} = 2 \times \left(-\frac{1}{2}\right)^9 = 2 \times -\frac{1}{512} = -\frac{2}{512} = -\frac{1}{256}

Answer: a10=1256a_{10} = -\frac{1}{256}

10. Sequence: 100, 20, 4, … Find a8a_8

  • a1=100a_1 = 100
  • r=20100=15r = \frac{20}{100} = \frac{1}{5}
  • n=8n = 8

a8=100×(15)(81)=100×(15)7=100×178125=10078125=43125a_8 = 100 \times \left(\frac{1}{5}\right)^{(8-1)} = 100 \times \left(\frac{1}{5}\right)^7 = 100 \times \frac{1}{78125} = \frac{100}{78125} = \frac{4}{3125}

Answer: a8=43125a_8 = \frac{4}{3125}

Items 11 – 15: Inserting Geometric Means

To insert geometric means, find the common ratio rr by dividing the last term by the first and taking the appropriate root depending on the number of means to be inserted. Then multiply each preceding term by rr to find the next term.

11. Sequence: 3, ____, 8

  • We need to find rr such that 8=3r28 = 3r^2.

r2=83,r=83=263r^2 = \frac{8}{3}, \quad r = \sqrt{\frac{8}{3}} = \frac{2\sqrt{6}}{3}

The geometric mean is 3×263=263 \times \frac{2\sqrt{6}}{3} = 2\sqrt{6}.

**Answer: ( 3, , 2\sqrt{6}, , 8

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometric Sequences
Geometric Means

Formulas

Geometric sequence nth term formula: $a_n = a_1 \times r^{(n-1)}$

Theorems

-

Suitable Grade Level

High School