Math Problem Statement

Find g(-2) and one value of x for which g(x) = -1 from the graph of a function g.

Solution

Let's solve the problem based on the graph.

  1. For part (a): Finding g(2)g(-2):

    • Look at the graph at x=2x = -2.
    • From the image, it seems that the value of g(x)g(x) when x=2x = -2 is approximately 22.

    So, g(2)=2g(-2) = 2.

  2. For part (b): Finding one value of xx where g(x)=1g(x) = -1:

    • We need to identify the xx-coordinates where the function g(x)g(x) equals 1-1.
    • By visually inspecting the graph, it seems that the function intersects y=1y = -1 at two points. One of these points appears to be x=1x = 1.

Thus, one value of xx for which g(x)=1g(x) = -1 is x=1x = 1.

Let me know if you need more details on these solutions.

Here are 5 relative questions to expand on the information:

  1. What are the other xx-values where g(x)=1g(x) = -1?
  2. What is the range of the function g(x)g(x)?
  3. Can you identify the intervals where g(x)g(x) is increasing or decreasing?
  4. What is the approximate minimum value of g(x)g(x)?
  5. How can you determine if the function g(x)g(x) is continuous based on the graph?

Tip: When reading values off a graph, estimate carefully based on the grid, and if possible, confirm by tracing specific points with a ruler or line tool.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Evaluation
Graph Reading

Formulas

-

Theorems

-

Suitable Grade Level

Grades 8-10