Math Problem Statement

(16^2)^(-1/4) = 64^(1/4) + 4^(x+2)

Solution

The equation in the image is:

(162)14=6414+4x+2(16^2)^{-\frac{1}{4}} = 64^{\frac{1}{4}} + 4^{x+2}

To solve for xx, let's break down each component.

  1. Simplify the Left Side:
    (162)14(16^2)^{-\frac{1}{4}}

    • Rewrite 1616 as 242^4:
      (162)14=((24)2)14=(28)14(16^2)^{-\frac{1}{4}} = ((2^4)^2)^{-\frac{1}{4}} = (2^8)^{-\frac{1}{4}}
    • Applying the exponent rule (am)n=amn(a^m)^n = a^{m \cdot n}: (28)14=2814=22=14(2^8)^{-\frac{1}{4}} = 2^{8 \cdot -\frac{1}{4}} = 2^{-2} = \frac{1}{4}

    So, the left side simplifies to 14\frac{1}{4}.

  2. Simplify the Right Side:
    6414+4x+264^{\frac{1}{4}} + 4^{x+2}

    • Rewrite 6464 as 262^6:
      [ 64^{\frac{1}{4}} = (2^6)^{\frac{1}{4}} = 2^{6 \cdot \frac{1}{4}} = 2^{\frac{3}{2}} = \sqrt{8} =

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Simplification of Powers
Equation Solving

Formulas

a^(m*n) = (a^m)^n
a^(-m) = 1/(a^m)

Theorems

Laws of Exponents

Suitable Grade Level

Grades 9-12