Math Problem Statement

ratkaise tehtävä

Tarkastellaan määrätyn integraalin tarkan arvon laskemista osamurtokehitelmän avulla. Osamurtokehitelmän yrite on: \[ \int_0^1 \frac{x}{(x + 8)(x + 7)^2} \, dx \]. Määrää kertoimet A, B, C ja ratkaise integraalin tarkka arvo.

Solution

This exercise involves calculating the exact value of a given definite integral using partial fraction decomposition. Let's break down the task step by step:

Given integral:

01x(x+8)(x+7)2dx\int_0^1 \frac{x}{(x + 8)(x + 7)^2} \, dx

The goal is to use partial fraction decomposition of the integrand.

Partial fraction decomposition:

The form of the decomposition is given by: x(x+8)(x+7)2=Ax+8+Bx+7+C(x+7)2\frac{x}{(x + 8)(x + 7)^2} = \frac{A}{x + 8} + \frac{B}{x + 7} + \frac{C}{(x + 7)^2}

Step a) Finding coefficients AA, BB, and CC:

To find AA, BB, and CC, multiply both sides by (x+8)(x+7)2(x + 8)(x + 7)^2 to clear the denominators: x=A(x+7)2+B(x+8)(x+7)+C(x+8)x = A(x + 7)^2 + B(x + 8)(x + 7) + C(x + 8)

Now expand both sides and match coefficients for powers of xx.

  1. Expanding A(x+7)2=A(x2+14x+49)A(x + 7)^2 = A(x^2 + 14x + 49)
  2. Expanding B(x+8)(x+7)=B(x2+15x+56)B(x + 8)(x + 7) = B(x^2 + 15x + 56)
  3. Expanding C(x+8)=Cx+8CC(x + 8) = Cx + 8C

The left-hand side is just xx, which means the right-hand side must simplify to xx.

Thus, we have: x=A(x2+14x+49)+B(x2+15x+56)+Cx+8Cx = A(x^2 + 14x + 49) + B(x^2 + 15x + 56) + Cx + 8C

Now collect the powers of xx:

  • x2x^2 terms: A+B=0A + B = 0
  • x1x^1 terms: 14A+15B+C=114A + 15B + C = 1
  • Constant terms: 49A+56B+8C=049A + 56B + 8C = 0

Solve this system of equations for AA, BB, and CC.

  1. From A+B=0A + B = 0, we have B=AB = -A.
  2. Substitute into the second equation: 14A+15(A)+C=1A+C=1C=A+114A + 15(-A) + C = 1 \Rightarrow -A + C = 1 \Rightarrow C = A + 1.
  3. Substitute into the third equation: 49A+56(A)+8(A+1)=07A+8A+8=0A=849A + 56(-A) + 8(A + 1) = 0 \Rightarrow -7A + 8A + 8 = 0 \Rightarrow A = -8.
  4. Hence, B=8B = 8 and C=7C = -7.

Thus, the coefficients are: A=8,B=8,C=7A = -8, \quad B = 8, \quad C = -7

Step b) The integral function with respect to xx:

Using the partial fraction decomposition, the integrand can now be written as: 8x+8+8x+77(x+7)2\frac{-8}{x + 8} + \frac{8}{x + 7} - \frac{7}{(x + 7)^2}

Now, integrate each term: (8x+8+8x+77(x+7)2)dx\int \left( \frac{-8}{x + 8} + \frac{8}{x + 7} - \frac{7}{(x + 7)^2} \right) \, dx

  1. The first term gives: 8lnx+8-8 \ln|x + 8|.
  2. The second term gives: 8lnx+78 \ln|x + 7|.
  3. The third term gives: 7x+7\frac{7}{x + 7}.

Thus, the integral function (with the constant of integration omitted) is: 8lnx+8+8lnx+77x+7-8 \ln|x + 8| + 8 \ln|x + 7| - \frac{7}{x + 7}

Step c) The exact value of the definite integral:

To find the exact value of the definite integral, evaluate this result at the limits x=1x = 1 and x=0x = 0.

For x=1x = 1: 8ln(1+8)+8ln(1+7)71+7=8ln9+8ln878-8 \ln(1 + 8) + 8 \ln(1 + 7) - \frac{7}{1 + 7} = -8 \ln 9 + 8 \ln 8 - \frac{7}{8}

For x=0x = 0: 8ln(0+8)+8ln(0+7)70+7=8ln8+8ln71-8 \ln(0 + 8) + 8 \ln(0 + 7) - \frac{7}{0 + 7} = -8 \ln 8 + 8 \ln 7 - 1

Now subtract the result at x=0x = 0 from the result at x=1x = 1: (8ln9+8ln878)(8ln8+8ln71)\left( -8 \ln 9 + 8 \ln 8 - \frac{7}{8} \right) - \left( -8 \ln 8 + 8 \ln 7 - 1 \right)

Simplifying: 8ln9+8ln878+8ln88ln7+1-8 \ln 9 + 8 \ln 8 - \frac{7}{8} + 8 \ln 8 - 8 \ln 7 + 1 =8(ln8ln9ln7)+178= 8(\ln 8 - \ln 9 - \ln 7) + 1 - \frac{7}{8} =8ln(8297)+178= 8 \ln \left( \frac{8^2}{9 \cdot 7} \right) + 1 - \frac{7}{8}

This is the exact value of the definite integral.


Do you want more details on any step, or have any questions?

Here are 5 related questions to consider:

  1. How would the result change if the limits of integration were different?
  2. What is the importance of partial fraction decomposition in integral calculus?
  3. Can this method be applied to more complex rational functions?
  4. How does the choice of logarithmic terms affect integration results?
  5. How would the integral change if x2x^2 were in the numerator?

Tip: Always check if the function allows partial fraction decomposition before applying it!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Partial Fractions
Definite Integrals

Formulas

Partial Fraction Decomposition: \( \frac{x}{(x + 8)(x + 7)^2} = \frac{A}{x + 8} + \frac{B}{x + 7} + \frac{C}{(x + 7)^2} \)
Integration of fractions: \( \int \frac{1}{x + a} \, dx = \ln |x + a| \)
Integration of \(\frac{1}{(x + a)^2} \)

Theorems

Fundamental Theorem of Calculus
Logarithmic Integral

Suitable Grade Level

Undergraduate (Calculus I or II)