Math Problem Statement

Find a) cos520° b) cos(-200°) c) cos(-160°) d) cos200° e) cos240° f) cos20° g) sin250° h) sin70° when cos160° = -0.940

Solution

Let's work through each of these cosine and sine values, using known trigonometric identities and properties of angles.

a) cos520\cos 520^\circ

Since the cosine function is periodic with a period of 360360^\circ, we reduce the angle: 520360=160520^\circ - 360^\circ = 160^\circ Thus, cos520=cos160=0.940\cos 520^\circ = \cos 160^\circ = -0.940.

b) cos(200)\cos(-200^\circ)

Using the identity cos(θ)=cos(θ)\cos(-\theta) = \cos(\theta): cos(200)=cos(200)\cos(-200^\circ) = \cos(200^\circ) We'll find cos200\cos 200^\circ in part d.

c) cos(160)\cos(-160^\circ)

Similarly, using cos(θ)=cos(θ)\cos(-\theta) = \cos(\theta): cos(160)=cos(160)=0.940\cos(-160^\circ) = \cos(160^\circ) = -0.940

d) cos200\cos 200^\circ

First, note that 200200^\circ is in the third quadrant where cosine is negative. We can subtract 200200^\circ from 180180^\circ to find the reference angle: 200180=20200^\circ - 180^\circ = 20^\circ Thus: cos200=cos20\cos 200^\circ = -\cos 20^\circ Since we haven't calculated cos20\cos 20^\circ yet, we'll find that in part f.

e) cos240\cos 240^\circ

240240^\circ is also in the third quadrant. The reference angle is: 240180=60240^\circ - 180^\circ = 60^\circ Thus: cos240=cos60=12\cos 240^\circ = -\cos 60^\circ = -\frac{1}{2}

f) cos20\cos 20^\circ

Using a calculator, we find: cos200.9397\cos 20^\circ \approx 0.9397

g) sin250\sin 250^\circ

250250^\circ is in the third quadrant where sine is negative. The reference angle is: 250180=70250^\circ - 180^\circ = 70^\circ Thus: sin250=sin70\sin 250^\circ = -\sin 70^\circ We'll calculate sin70\sin 70^\circ in part h.

h) sin70\sin 70^\circ

Using a calculator: sin700.9397\sin 70^\circ \approx 0.9397

Thus: sin250=0.9397\sin 250^\circ = -0.9397

Summary of Results:

a) cos520=0.940\cos 520^\circ = -0.940
b) cos(200)=cos20=0.9397\cos(-200^\circ) = -\cos 20^\circ = -0.9397
c) cos(160)=0.940\cos(-160^\circ) = -0.940
d) cos200=0.9397\cos 200^\circ = -0.9397
e) cos240=12\cos 240^\circ = -\frac{1}{2}
f) cos200.9397\cos 20^\circ \approx 0.9397
g) sin250=0.9397\sin 250^\circ = -0.9397
h) sin700.9397\sin 70^\circ \approx 0.9397


Do you need more details or have any questions?

Here are 5 related questions to expand on this:

  1. What is the period of sine and cosine functions?
  2. How does the unit circle help in calculating sine and cosine of various angles?
  3. What is the relationship between sine and cosine for complementary angles?
  4. How do sine and cosine change in different quadrants?
  5. How can we derive sine and cosine values using trigonometric identities?

Tip: Remember that sine and cosine functions repeat every 360360^\circ, so subtract or add multiples of 360360^\circ to simplify large or negative angles.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Cosine
Sine
Periodic Functions
Reference Angles

Formulas

cos(θ) = cos(θ ± 360°)
cos(-θ) = cos(θ)
sin(θ) = sin(θ ± 360°)
Reference angle for cosine and sine in quadrants

Theorems

Cosine and sine periodicity
Cosine and sine quadrant rules
Reference angles in trigonometry

Suitable Grade Level

Grades 10-12