Math Problem Statement

{1-[(1-1 fratto 4)+(1 fratto 2 - 1 fratto3)]}-{1-[(1 fratto 3 - 1 fratto 4)- (1 fratto 5 - 1 fratto 6)]}

Solution

To solve this expression, let's break it down step-by-step.

The expression is:

[ \left{1 - \left[\left(1 - \frac{1}{4}\right) + \left(\frac{1}{2} - \frac{1}{3}\right)\right]\right} - \left{1 - \left[\left(\frac{1}{3} - \frac{1}{4}\right) - \left(\frac{1}{5} - \frac{1}{6}\right)\right]\right} ]

Step 1: Solve the Inner Brackets

First Bracket: (114)+(1213)\left(1 - \frac{1}{4}\right) + \left(\frac{1}{2} - \frac{1}{3}\right)

  1. Calculate 1141 - \frac{1}{4}: 114=414=341 - \frac{1}{4} = \frac{4 - 1}{4} = \frac{3}{4}

  2. Calculate 1213\frac{1}{2} - \frac{1}{3}: 1213=326=16\frac{1}{2} - \frac{1}{3} = \frac{3 - 2}{6} = \frac{1}{6}

  3. Now combine these results: 34+16=9+212=1112\frac{3}{4} + \frac{1}{6} = \frac{9 + 2}{12} = \frac{11}{12}

So, the value of the first bracket is 1112\frac{11}{12}.

Second Bracket: (1314)(1516)\left(\frac{1}{3} - \frac{1}{4}\right) - \left(\frac{1}{5} - \frac{1}{6}\right)

  1. Calculate 1314\frac{1}{3} - \frac{1}{4}: 1314=4312=112\frac{1}{3} - \frac{1}{4} = \frac{4 - 3}{12} = \frac{1}{12}

  2. Calculate 1516\frac{1}{5} - \frac{1}{6}: 1516=6530=130\frac{1}{5} - \frac{1}{6} = \frac{6 - 5}{30} = \frac{1}{30}

  3. Now combine these results: 112130=5260=360=120\frac{1}{12} - \frac{1}{30} = \frac{5 - 2}{60} = \frac{3}{60} = \frac{1}{20}

So, the value of the second bracket is 120\frac{1}{20}.

Step 2: Substitute Back and Solve

Now we substitute these values into the original expression:

{11112}{1120}\left\{1 - \frac{11}{12}\right\} - \left\{1 - \frac{1}{20}\right\}

  1. Calculate 111121 - \frac{11}{12}: 11112=121112=1121 - \frac{11}{12} = \frac{12 - 11}{12} = \frac{1}{12}

  2. Calculate 11201 - \frac{1}{20}: 1120=20120=19201 - \frac{1}{20} = \frac{20 - 1}{20} = \frac{19}{20}

  3. Now combine these results: 1121920=55760=5260=1315\frac{1}{12} - \frac{19}{20} = \frac{5 - 57}{60} = -\frac{52}{60} = -\frac{13}{15}

Final Answer

1315-\frac{13}{15}

Would you like more details or have questions on any part of this solution?


Here are some related questions you might consider:

  1. How do we simplify complex fractions in nested brackets?
  2. Why do we find a common denominator when subtracting fractions?
  3. How would the expression change if different numbers were used?
  4. What are other methods to verify the answer?
  5. How do we convert the fraction result to a decimal?

Tip: Always simplify fractions at each step to make calculations easier and avoid mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Arithmetic
Fractions
Order of Operations

Formulas

a - b = (a*n - b*n) / n (when finding a common denominator)
(a/b) + (c/d) = (a*d + b*c) / (b*d) (for adding/subtracting fractions)

Theorems

Basic Arithmetic Properties
Order of Operations (PEMDAS)

Suitable Grade Level

Grades 6-8