Math Problem Statement

Calculate A + B, A - B, AB for A = 4 - 3√5 and B = -1 + 2√5; factorize 9 + 4√5 and simplify √(9 + 4√5); show that (2 / (√3 - 1)) + (-2 / (√3 + 1)) is a natural number.

Solution

Let's break down and solve the problems presented in the image:

1. Given A=435A = 4 - 3\sqrt{5} and B=1+25B = -1 + 2\sqrt{5}, calculate:

  • A+BA + B
  • ABA - B
  • ABAB

(i) A+BA + B:

A+B=(435)+(1+25)=41+(35+25)A + B = (4 - 3\sqrt{5}) + (-1 + 2\sqrt{5}) = 4 - 1 + (-3\sqrt{5} + 2\sqrt{5}) A+B=35A + B = 3 - \sqrt{5}

(ii) ABA - B:

AB=(435)(1+25)=4+1+(3525)A - B = (4 - 3\sqrt{5}) - (-1 + 2\sqrt{5}) = 4 + 1 + (-3\sqrt{5} - 2\sqrt{5}) AB=555A - B = 5 - 5\sqrt{5}

(iii) ABAB:

AB=(435)(1+25)AB = (4 - 3\sqrt{5})(-1 + 2\sqrt{5}) Applying distributive property: AB=4(1)+4(25)35(1)35(25)AB = 4(-1) + 4(2\sqrt{5}) - 3\sqrt{5}(-1) - 3\sqrt{5}(2\sqrt{5}) AB=4+85+356×5AB = -4 + 8\sqrt{5} + 3\sqrt{5} - 6 \times 5 AB=4+11530AB = -4 + 11\sqrt{5} - 30 AB=34+115AB = -34 + 11\sqrt{5}


2. Factorize 9+459 + 4\sqrt{5} and deduce a simplification for 9+45\sqrt{9 + 4\sqrt{5}}.

We attempt to express 9+459 + 4\sqrt{5} as a square of some binomial, say (a+b5)2(a + b\sqrt{5})^2: (a+b5)2=a2+2ab5+5b2(a + b\sqrt{5})^2 = a^2 + 2ab\sqrt{5} + 5b^2 Matching terms with 9+459 + 4\sqrt{5}: a2+5b2=9and2ab=4a^2 + 5b^2 = 9 \quad \text{and} \quad 2ab = 4 From 2ab=42ab = 4, we get ab=2ab = 2, so b=2ab = \frac{2}{a}.

Substitute this into a2+5b2=9a^2 + 5b^2 = 9: a2+5(2a)2=9a^2 + 5\left(\frac{2}{a}\right)^2 = 9 a2+20a2=9a^2 + \frac{20}{a^2} = 9 Multiply through by a2a^2: a4+20=9a2a^4 + 20 = 9a^2 a49a2+20=0a^4 - 9a^2 + 20 = 0 Let x=a2x = a^2, so: x29x+20=0x^2 - 9x + 20 = 0 Solve using the quadratic formula: x=9±924(1)(20)2=9±81802=9±12x = \frac{9 \pm \sqrt{9^2 - 4(1)(20)}}{2} = \frac{9 \pm \sqrt{81 - 80}}{2} = \frac{9 \pm 1}{2} Thus, x=5x = 5 or x=4x = 4. Since x=a2x = a^2, this gives a2=4a^2 = 4, so a=2a = 2.

Substitute back b=2a=1b = \frac{2}{a} = 1. Therefore, we have: 9+45=(2+5)29 + 4\sqrt{5} = (2 + \sqrt{5})^2 Thus: 9+45=2+5\sqrt{9 + 4\sqrt{5}} = 2 + \sqrt{5}


3. Show that 231+23+1\frac{2}{\sqrt{3} - 1} + \frac{-2}{\sqrt{3} + 1} is a natural number.

First, rationalize both denominators.

(i) Rationalizing 231\frac{2}{\sqrt{3} - 1}:

Multiply numerator and denominator by 3+1\sqrt{3} + 1: 231×3+13+1=2(3+1)(3)212=2(3+1)31=2(3+1)2=3+1\frac{2}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{2(\sqrt{3} + 1)}{(\sqrt{3})^2 - 1^2} = \frac{2(\sqrt{3} + 1)}{3 - 1} = \frac{2(\sqrt{3} + 1)}{2} = \sqrt{3} + 1

(ii) Rationalizing 23+1\frac{-2}{\sqrt{3} + 1}:

Multiply numerator and denominator by 31\sqrt{3} - 1: 23+1×3131=2(31)(3)212=2(31)31=2(31)2=(31)\frac{-2}{\sqrt{3} + 1} \times \frac{\sqrt{3} - 1}{\sqrt{3} - 1} = \frac{-2(\sqrt{3} - 1)}{(\sqrt{3})^2 - 1^2} = \frac{-2(\sqrt{3} - 1)}{3 - 1} = \frac{-2(\sqrt{3} - 1)}{2} = -(\sqrt{3} - 1)

(iii) Adding the results:

(3+1)+(3+1)=1+1=2\left( \sqrt{3} + 1 \right) + \left( -\sqrt{3} + 1 \right) = 1 + 1 = 2 Thus, the result is a natural number: 22.


Would you like more details on any of these steps or further clarifications?

Here are 5 related questions:

  1. How do you simplify other complex algebraic expressions involving square roots?
  2. What are the general steps to rationalize any denominator?
  3. Can you show how to factor binomials using different methods?
  4. How do you apply the quadratic formula to solve more complex algebraic equations?
  5. What is the significance of simplifying surds in practical applications?

Tip: When rationalizing denominators, always multiply by the conjugate of the denominator to simplify the square root.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Equations
Rationalizing Denominators

Formulas

Binomial operations
Rationalizing the denominator
(a + b√c)^2

Theorems

Quadratic formula

Suitable Grade Level

High School