Math Problem Statement

Diketahui persamaan matriks berikut, Matriks X adalah?

Solution

To solve the given matrix equation, let's analyze it step by step:

The equation is:

3 & 2 \\ -5 & -3 \end{bmatrix} \cdot X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$ Where $$X$$ is a $$2 \times 2$$ matrix. ### Step 1: Write the equation for $$X$$ To isolate $$X$$, we multiply both sides of the equation by the inverse of the matrix $$\begin{bmatrix} 3 & 2 \\ -5 & -3 \end{bmatrix}$$ on the left. This gives: $$X = \begin{bmatrix} 3 & 2 \\ -5 & -3 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$ ### Step 2: Calculate the inverse of $$\begin{bmatrix} 3 & 2 \\ -5 & -3 \end{bmatrix}$$ The formula for the inverse of a $$2 \times 2$$ matrix is: $$\text{If } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$ For $$\begin{bmatrix} 3 & 2 \\ -5 & -3 \end{bmatrix}$$, we have: - $$a = 3$$, $$b = 2$$, $$c = -5$$, $$d = -3$$ - Determinant = $$(3)(-3) - (2)(-5) = -9 + 10 = 1$$ Thus, the inverse is: $$\begin{bmatrix} 3 & 2 \\ -5 & -3 \end{bmatrix}^{-1} = \begin{bmatrix} -3 & -2 \\ 5 & 3 \end{bmatrix}$$ ### Step 3: Perform the matrix multiplication Now, compute: $$X = \begin{bmatrix} -3 & -2 \\ 5 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$ Multiply the matrices: $$X = \begin{bmatrix} (-3)(1) + (-2)(3) & (-3)(2) + (-2)(4) \\ (5)(1) + (3)(3) & (5)(2) + (3)(4) \end{bmatrix}$$ Simplify: $$X = \begin{bmatrix} -3 - 6 & -6 - 8 \\ 5 + 9 & 10 + 12 \end{bmatrix}$$ $$X = \begin{bmatrix} -9 & -14 \\ 14 & 22 \end{bmatrix}$$ ### Final Answer: The matrix $$X$$ is: $$X = \begin{bmatrix} -9 & -14 \\ 14 & 22 \end{bmatrix}$$ Let me know if you want a detailed explanation of any step! #### Related Questions: 1. How do you compute the determinant of a $$2 \times 2$$ matrix? 2. What are the properties of matrix inverses? 3. Can all matrices be inverted? If not, why? 4. How does matrix multiplication work in terms of rows and columns? 5. What are practical applications of solving matrix equations? #### Tip: Always check the determinant before attempting to find the inverse of a matrix. If it's zero, the matrix is not invertible

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Matrix Inversion
Matrix Multiplication

Formulas

Inverse of 2x2 matrix: A^-1 = (1 / (ad - bc)) * [[d, -b], [-c, a]]
Matrix Multiplication: C = A * B

Theorems

Matrix Inverse Theorem
Properties of Determinants

Suitable Grade Level

Grades 10-12