Math Problem Statement

If ∠CDE is a straight angle, DE bisects ∠GDH, m∠GDE = (8x - 1)°, m∠EDH = (6x + 15)°, and m∠CDF = 43°, find each measure.

Solution

Let’s solve the given problem step by step.

Problem Analysis:

We are given:

  1. ∠CDE is a straight angle, meaning mCDE=180m∠CDE = 180^\circ.
  2. DE\overline{DE} bisects ∠GDH, so mGDE=mEDHm∠GDE = m∠EDH.
  3. mGDE=(8x1)m∠GDE = (8x - 1)^\circ, mEDH=(6x+15)m∠EDH = (6x + 15)^\circ, and mCDF=43m∠CDF = 43^\circ.

We need to:

  1. Find xx.
  2. Calculate mGDHm∠GDH, mFDHm∠FDH, and mFDEm∠FDE.

Step 1: Solve for xx

Since DE\overline{DE} bisects GDH∠GDH, we know: mGDE=mEDH.m∠GDE = m∠EDH. Substitute the given expressions: 8x1=6x+15.8x - 1 = 6x + 15. Solve for xx: 8x6x=15+1,8x - 6x = 15 + 1, 2x=16,2x = 16, x=8.x = 8.


Step 2: Find mGDEm∠GDE and mEDHm∠EDH

Substitute x=8x = 8 into the expressions for mGDEm∠GDE and mEDHm∠EDH: mGDE=8(8)1=641=63,m∠GDE = 8(8) - 1 = 64 - 1 = 63^\circ, mEDH=6(8)+15=48+15=63.m∠EDH = 6(8) + 15 = 48 + 15 = 63^\circ.

Thus, mGDH=mGDE+mEDH=63+63=126m∠GDH = m∠GDE + m∠EDH = 63^\circ + 63^\circ = 126^\circ.


Step 3: Find mFDHm∠FDH

We know: mCDE=mCDF+mFDH.m∠CDE = m∠CDF + m∠FDH. Substitute the known values: 180=43+mFDH.180 = 43 + m∠FDH. Solve for mFDHm∠FDH: mFDH=18043=137.m∠FDH = 180 - 43 = 137^\circ.


Step 4: Find mFDEm∠FDE

From the figure: mFDE=mFDHmEDH.m∠FDE = m∠FDH - m∠EDH. Substitute the values: mFDE=13763=74.m∠FDE = 137 - 63 = 74^\circ.


Final Answers:

  1. x=8x = 8,
  2. mGDH=126m∠GDH = 126^\circ,
  3. mFDH=137m∠FDH = 137^\circ,
  4. mFDE=74m∠FDE = 74^\circ.

Would you like further explanation or details?

Related Questions:

  1. How do you determine if two angles are supplementary or complementary?
  2. What are the properties of angle bisectors in geometry?
  3. How do you calculate an angle when given a straight angle and one of its parts?
  4. What is the significance of substituting known values into angle equations?
  5. How can you verify the solution geometrically or algebraically?

Tip:

Always re-check calculations by substituting your final results into the original conditions to ensure accuracy.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Angles
Angle Bisector

Formulas

m∠CDE = 180° (straight angle)
m∠GDH = m∠GDE + m∠EDH
m∠FDE = m∠FDH - m∠EDH

Theorems

Angle Bisector Theorem
Properties of Straight Angles

Suitable Grade Level

Grades 8-10