Math Problem Statement

Plz solve this vectors question. Maths igcse

Solution

The image appears to contain a question related to vectors involving a triangle, but it's somewhat rotated. I'll rotate and analyze the image to provide the correct solution.

Analyzing the Problem:

Given Data:

  • Triangle PQR is provided with vectors PQ=a\overrightarrow{PQ} = \mathbf{a} and PR=b\overrightarrow{PR} = \mathbf{b}.
  • A point S lies on QR such that QS:SR=1:2QS : SR = 1 : 2.
  • You're required to:
    1. Express QS\overrightarrow{QS} in terms of a\mathbf{a} and b\mathbf{b}.
    2. Find PS\overrightarrow{PS} in terms of a\mathbf{a} and b\mathbf{b}.

Step-by-Step Solution:

1. Expressing QS\overrightarrow{QS}:

Given QS:SR=1:2QS : SR = 1 : 2, SS divides QRQR in the ratio 1:21:2.

Let QR=c\overrightarrow{QR} = \mathbf{c}.

Now, QS\overrightarrow{QS} can be found using the section formula: QS=2Q+1R1+2=2Q+R3\overrightarrow{QS} = \frac{2\overrightarrow{Q} + 1\overrightarrow{R}}{1+2} = \frac{2\overrightarrow{Q} + \overrightarrow{R}}{3}

But QR=PRPQ=ba\overrightarrow{QR} = \overrightarrow{PR} - \overrightarrow{PQ} = \mathbf{b} - \mathbf{a}.

So, QS\overrightarrow{QS} becomes: QS=2(PRPQ)+PR3\overrightarrow{QS} = \frac{2(\overrightarrow{PR} - \overrightarrow{PQ}) + \overrightarrow{PR}}{3}

Substitute b\mathbf{b} and a\mathbf{a}: QS=2(ba)+b3=2b2a+b3=3b2a3\overrightarrow{QS} = \frac{2(\mathbf{b} - \mathbf{a}) + \mathbf{b}}{3} = \frac{2\mathbf{b} - 2\mathbf{a} + \mathbf{b}}{3} = \frac{3\mathbf{b} - 2\mathbf{a}}{3} QS=b23a\overrightarrow{QS} = \mathbf{b} - \frac{2}{3}\mathbf{a}

2. Expressing PS\overrightarrow{PS}:

PS\overrightarrow{PS} is given by: PS=PQ+QS\overrightarrow{PS} = \overrightarrow{PQ} + \overrightarrow{QS}

Substitute the expression for QS\overrightarrow{QS}: PS=a+(b23a)\overrightarrow{PS} = \mathbf{a} + \left(\mathbf{b} - \frac{2}{3}\mathbf{a}\right) PS=b+(a23a)=b+13a\overrightarrow{PS} = \mathbf{b} + \left(\mathbf{a} - \frac{2}{3}\mathbf{a}\right) = \mathbf{b} + \frac{1}{3}\mathbf{a}

Final Answers:

  1. QS=b23a\overrightarrow{QS} = \mathbf{b} - \frac{2}{3}\mathbf{a}
  2. (\overrightarrow{PS} = \frac{1}{3}\mathbf{a} + \mathbf{b

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors

Formulas

Section formula

Theorems

-

Suitable Grade Level

IGCSE (Grade 9-10)