Math Problem Statement

For the given points​ P, Q, and​ R, find the approximate measurements of the angles of Upper DeltaPQR. ​P(0​,negative 1​,3​), ​Q(2​,2​,1​), ​R(minus2​,2​,4​)

Solution

To find the angles of triangle ΔPQR\Delta PQR, where the points are given as:

  • P(0,1,3)P(0, -1, 3)
  • Q(2,2,1)Q(2, 2, 1)
  • R(2,2,4)R(-2, 2, 4)

we can proceed by using the dot product of vectors to calculate the angles. Here's the step-by-step process:

Step 1: Find vectors PQ, PR, and QR

We first compute the vectors formed by the points.

  • Vector PQ\mathbf{PQ}: PQ=QP=(20,2(1),13)=(2,3,2)\mathbf{PQ} = \mathbf{Q} - \mathbf{P} = (2 - 0, 2 - (-1), 1 - 3) = (2, 3, -2)

  • Vector PR\mathbf{PR}: PR=RP=(20,2(1),43)=(2,3,1)\mathbf{PR} = \mathbf{R} - \mathbf{P} = (-2 - 0, 2 - (-1), 4 - 3) = (-2, 3, 1)

  • Vector QR\mathbf{QR}: QR=RQ=(22,22,41)=(4,0,3)\mathbf{QR} = \mathbf{R} - \mathbf{Q} = (-2 - 2, 2 - 2, 4 - 1) = (-4, 0, 3)

Step 2: Find the magnitudes of vectors

Next, we find the magnitudes of the vectors.

  • PQ=22+32+(2)2=4+9+4=17|\mathbf{PQ}| = \sqrt{2^2 + 3^2 + (-2)^2} = \sqrt{4 + 9 + 4} = \sqrt{17}
  • PR=(2)2+32+12=4+9+1=14|\mathbf{PR}| = \sqrt{(-2)^2 + 3^2 + 1^2} = \sqrt{4 + 9 + 1} = \sqrt{14}
  • QR=(4)2+02+32=16+9=25=5|\mathbf{QR}| = \sqrt{(-4)^2 + 0^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5

Step 3: Compute dot products

Now, let's compute the dot products of the pairs of vectors.

  • PQPR=(2)(2)+(3)(3)+(2)(1)=4+92=3\mathbf{PQ} \cdot \mathbf{PR} = (2)(-2) + (3)(3) + (-2)(1) = -4 + 9 - 2 = 3
  • PQQR=(2)(4)+(3)(0)+(2)(3)=8+06=14\mathbf{PQ} \cdot \mathbf{QR} = (2)(-4) + (3)(0) + (-2)(3) = -8 + 0 - 6 = -14
  • PRQR=(2)(4)+(3)(0)+(1)(3)=8+0+3=11\mathbf{PR} \cdot \mathbf{QR} = (-2)(-4) + (3)(0) + (1)(3) = 8 + 0 + 3 = 11

Step 4: Find the angles using the cosine formula

We can now find the cosine of the angles using the dot product formula: cos(θ)=ABAB\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|}

  • Angle PQR\angle PQR: cos(θ)=PQQRPQQR=1417×5=145170.852\cos(\theta) = \frac{\mathbf{PQ} \cdot \mathbf{QR}}{|\mathbf{PQ}| |\mathbf{QR}|} = \frac{-14}{\sqrt{17} \times 5} = \frac{-14}{5\sqrt{17}} \approx -0.852 θPQR=cos1(0.852)148.2\theta_{PQR} = \cos^{-1}(-0.852) \approx 148.2^\circ

  • Angle QPR\angle QPR: cos(θ)=PQPRPQPR=317×14=32380.194\cos(\theta) = \frac{\mathbf{PQ} \cdot \mathbf{PR}}{|\mathbf{PQ}| |\mathbf{PR}|} = \frac{3}{\sqrt{17} \times \sqrt{14}} = \frac{3}{\sqrt{238}} \approx 0.194 θQPR=cos1(0.194)78.8\theta_{QPR} = \cos^{-1}(0.194) \approx 78.8^\circ

  • Angle PRQ\angle PRQ: cos(θ)=PRQRPRQR=1114×5=115140.742\cos(\theta) = \frac{\mathbf{PR} \cdot \mathbf{QR}}{|\mathbf{PR}| |\mathbf{QR}|} = \frac{11}{\sqrt{14} \times 5} = \frac{11}{5\sqrt{14}} \approx 0.742 θPRQ=cos1(0.742)42.9\theta_{PRQ} = \cos^{-1}(0.742) \approx 42.9^\circ

Final Answer:

The approximate angles of ΔPQR\Delta PQR are:

  • θPQR148.2\theta_{PQR} \approx 148.2^\circ
  • θQPR78.8\theta_{QPR} \approx 78.8^\circ
  • θPRQ42.9\theta_{PRQ} \approx 42.9^\circ

Would you like further details on the steps or have any questions?

Related Questions:

  1. How do you calculate the cross product of vectors in 3D?
  2. What is the geometric meaning of the dot product?
  3. How can vector magnitudes help in determining distances in 3D space?
  4. What is the law of cosines in vector form?
  5. How would the method change for points in 2D space?

Tip: When using the dot product for angles, always ensure the vectors are correctly formed from the point coordinates to avoid mistakes!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Dot Product
Geometry of Triangles in 3D Space

Formulas

Vector subtraction to find vectors between points
Magnitude of a vector: |v| = √(x^2 + y^2 + z^2)
Dot product formula: A · B = |A| |B| cos(θ)

Theorems

Cosine Rule for Vectors

Suitable Grade Level

Grades 10-12