Math Problem Statement
Dont invent your own vertices, use the position vectors given in the question
Solution
Let's solve the given problems using the specified position vectors.
Given:
The position vectors are:
Problem 1: Find
To find the angle at vertex , we use the dot product formula. Let's calculate the vectors and :
The dot product is:
The magnitudes of and are:
Using the dot product formula:
Thus, the angle is:
Problem 2: Verify Pythagorean Theorem
To verify that the triangle is a right triangle, we calculate the squares of the lengths of all sides:
- ( |\vec{BC}| = \sqrt{
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vectors
Dot Product
Trigonometry
Formulas
Dot product formula
Cosine rule
Theorems
Cosine rule
Suitable Grade Level
High School
Related Recommendation
Analyzing Triangle Properties and Calculating Area | Coordinate Geometry
Vector Diagrams and Resultant Velocity for Physics Problems
Step-by-step Solutions for Vector Algebra and Scalar Product Problems
Mathematics Assignment: Vectors, Planes, and Complex Numbers
Vector Proofs in Triangles and Parallelograms - Exercises 12 and 13