Math Problem Statement

Dont invent your own vertices, use the position vectors given in the question

Solution

Let's solve the given problems using the specified position vectors.

Given:

The position vectors are:

  • a=3i^+5j^\vec{a} = 3\hat{i} + 5\hat{j}
  • b=i^5j^\vec{b} = \hat{i} - 5\hat{j}
  • c=4i^+3j^\vec{c} = 4\hat{i} + 3\hat{j}

Problem 1: Find ABC\angle ABC

To find the angle at vertex BB, we use the dot product formula. Let's calculate the vectors BA\vec{BA} and BC\vec{BC}:

  • BA=ab=(3i^+5j^)(i^5j^)=(31)i^+(5(5))j^=2i^+10j^\vec{BA} = \vec{a} - \vec{b} = (3\hat{i} + 5\hat{j}) - (\hat{i} - 5\hat{j}) = (3 - 1)\hat{i} + (5 - (-5))\hat{j} = 2\hat{i} + 10\hat{j}
  • BC=cb=(4i^+3j^)(i^5j^)=(41)i^+(3(5))j^=3i^+8j^\vec{BC} = \vec{c} - \vec{b} = (4\hat{i} + 3\hat{j}) - (\hat{i} - 5\hat{j}) = (4 - 1)\hat{i} + (3 - (-5))\hat{j} = 3\hat{i} + 8\hat{j}

The dot product BABC\vec{BA} \cdot \vec{BC} is: BABC=(2i^+10j^)(3i^+8j^)=(23)+(108)=6+80=86\vec{BA} \cdot \vec{BC} = (2\hat{i} + 10\hat{j}) \cdot (3\hat{i} + 8\hat{j}) = (2 \cdot 3) + (10 \cdot 8) = 6 + 80 = 86

The magnitudes of BA\vec{BA} and BC\vec{BC} are: BA=22+102=4+100=104=226|\vec{BA}| = \sqrt{2^2 + 10^2} = \sqrt{4 + 100} = \sqrt{104} = 2\sqrt{26} BC=32+82=9+64=73|\vec{BC}| = \sqrt{3^2 + 8^2} = \sqrt{9 + 64} = \sqrt{73}

Using the dot product formula: cosθ=BABCBABC=8622673=8621898=431898\cos \theta = \frac{\vec{BA} \cdot \vec{BC}}{|\vec{BA}| |\vec{BC}|} = \frac{86}{2\sqrt{26} \cdot \sqrt{73}} = \frac{86}{2\sqrt{1898}} = \frac{43}{\sqrt{1898}}

Thus, the angle θ\theta is: θ=cos1(431898)\theta = \cos^{-1} \left( \frac{43}{\sqrt{1898}} \right)

Problem 2: Verify Pythagorean Theorem

To verify that the triangle is a right triangle, we calculate the squares of the lengths of all sides:

  • AB=BA=226|\vec{AB}| = |\vec{BA}| = 2\sqrt{26}
  • ( |\vec{BC}| = \sqrt{

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Dot Product
Trigonometry

Formulas

Dot product formula
Cosine rule

Theorems

Cosine rule

Suitable Grade Level

High School