Math Problem Statement

solve using a table of values (use real numbers)

Solution

To solve the function y=2cot(x3π4)y = 2 \cot \left( x - \frac{3\pi}{4} \right) using a table of values, we'll choose specific xx values, calculate the corresponding yy values, and then observe the behavior of the function.

Steps to create the table:

  1. Select xx values: Choose xx values that will give us a variety of points across one period of the cotangent function. Since the period of the cotangent function is π\pi, you can select xx values over an interval of length π\pi starting from 3π4\frac{3\pi}{4}, where the horizontal shift starts.

  2. Calculate yy values: Substitute the selected xx values into the function and compute yy.

Calculation:

Let's pick xx values around the interval [3π4,7π4]\left[\frac{3\pi}{4}, \frac{7\pi}{4}\right] to capture one full period:

x & y = 2 \cot \left( x - \frac{3\pi}{4} \right) \\ \hline \frac{3\pi}{4} & 2 \cdot \cot \left( \frac{3\pi}{4} - \frac{3\pi}{4} \right) = 2 \cdot \cot(0) = \text{undefined} \\ \frac{\pi}{2} + \frac{3\pi}{4} = \frac{5\pi}{4} & 2 \cdot \cot \left( \frac{5\pi}{4} - \frac{3\pi}{4} \right) = 2 \cdot \cot\left(\frac{\pi}{2}\right) = 2 \cdot 0 = 0 \\ \pi + \frac{3\pi}{4} = \frac{7\pi}{4} & 2 \cdot \cot \left( \frac{7\pi}{4} - \frac{3\pi}{4} \right) = 2 \cdot \cot(\pi) = 2 \cdot 0 = \text{undefined} \\ \frac{3\pi}{2} + \frac{3\pi}{4} = \frac{9\pi}{4} & 2 \cdot \cot \left( \frac{9\pi}{4} - \frac{3\pi}{4} \right) = 2 \cdot \cot\left(\frac{\pi}{2}\right) = 2 \cdot 0 = 0 \\ \frac{\pi}{4} + \frac{3\pi}{4} = \frac{7\pi}{4} & 2 \cdot \cot \left( \frac{7\pi}{4} - \frac{3\pi}{4} \right) = 2 \cdot \cot\left(\pi\right) = 2 \cdot 0 = \text{undefined} \\ \end{array}$$ ### Table of Values: $$\begin{array}{c|c} x & y = 2 \cot \left( x - \frac{3\pi}{4} \right) \\ \hline \frac{3\pi}{4} & \text{undefined (vertical asymptote)} \\ \frac{5\pi}{4} & 0 \\ \frac{7\pi}{4} & \text{undefined (vertical asymptote)} \\ \frac{9\pi}{4} & 0 \\ \end{array}$$ ### Explanation: - At $$x = \frac{3\pi}{4}$$ and $$x = \frac{7\pi}{4}$$, the function is undefined due to vertical asymptotes. - At $$x = \frac{5\pi}{4}$$ and $$x = \frac{9\pi}{4}$$, the function crosses the x-axis with a value of 0. ### Observation: The cotangent function alternates between positive and negative values around its asymptotes. The table shows that as $$x$$ approaches the asymptotes, the value of $$y$$ tends to $$\infty$$ or $$-\infty$$. Would you like more details or have any other questions? ### Relative Questions: 1. How do vertical asymptotes affect the behavior of the graph? 2. Why is the function undefined at certain $$x$$ values? 3. What happens to the function's value as $$x$$ approaches the vertical asymptotes? 4. How does the period of the function relate to the interval of $$x$$ chosen? 5. How would adding a vertical shift to the function affect the table of values? 6. How can you verify the values obtained in the table using a calculator? 7. What are the key characteristics of the cotangent function's graph based on the table? 8. How does scaling the function vertically by a factor of 2 affect the results? ### Tip: When analyzing trigonometric functions, always consider the presence of asymptotes and zeros, as these greatly influence the function's behavior and graph.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Cotangent Function
Vertical Asymptotes

Formulas

Cotangent function: y = 2 \cot \left( x - \frac{3\pi}{4} \right)

Theorems

-

Suitable Grade Level

High School