Math Problem Statement
solve using a table of values (use real numbers)
Solution
To solve the function using a table of values, we'll choose specific values, calculate the corresponding values, and then observe the behavior of the function.
Steps to create the table:
-
Select values: Choose values that will give us a variety of points across one period of the cotangent function. Since the period of the cotangent function is , you can select values over an interval of length starting from , where the horizontal shift starts.
-
Calculate values: Substitute the selected values into the function and compute .
Calculation:
Let's pick values around the interval to capture one full period:
x & y = 2 \cot \left( x - \frac{3\pi}{4} \right) \\ \hline \frac{3\pi}{4} & 2 \cdot \cot \left( \frac{3\pi}{4} - \frac{3\pi}{4} \right) = 2 \cdot \cot(0) = \text{undefined} \\ \frac{\pi}{2} + \frac{3\pi}{4} = \frac{5\pi}{4} & 2 \cdot \cot \left( \frac{5\pi}{4} - \frac{3\pi}{4} \right) = 2 \cdot \cot\left(\frac{\pi}{2}\right) = 2 \cdot 0 = 0 \\ \pi + \frac{3\pi}{4} = \frac{7\pi}{4} & 2 \cdot \cot \left( \frac{7\pi}{4} - \frac{3\pi}{4} \right) = 2 \cdot \cot(\pi) = 2 \cdot 0 = \text{undefined} \\ \frac{3\pi}{2} + \frac{3\pi}{4} = \frac{9\pi}{4} & 2 \cdot \cot \left( \frac{9\pi}{4} - \frac{3\pi}{4} \right) = 2 \cdot \cot\left(\frac{\pi}{2}\right) = 2 \cdot 0 = 0 \\ \frac{\pi}{4} + \frac{3\pi}{4} = \frac{7\pi}{4} & 2 \cdot \cot \left( \frac{7\pi}{4} - \frac{3\pi}{4} \right) = 2 \cdot \cot\left(\pi\right) = 2 \cdot 0 = \text{undefined} \\ \end{array}$$ ### Table of Values: $$\begin{array}{c|c} x & y = 2 \cot \left( x - \frac{3\pi}{4} \right) \\ \hline \frac{3\pi}{4} & \text{undefined (vertical asymptote)} \\ \frac{5\pi}{4} & 0 \\ \frac{7\pi}{4} & \text{undefined (vertical asymptote)} \\ \frac{9\pi}{4} & 0 \\ \end{array}$$ ### Explanation: - At $$x = \frac{3\pi}{4}$$ and $$x = \frac{7\pi}{4}$$, the function is undefined due to vertical asymptotes. - At $$x = \frac{5\pi}{4}$$ and $$x = \frac{9\pi}{4}$$, the function crosses the x-axis with a value of 0. ### Observation: The cotangent function alternates between positive and negative values around its asymptotes. The table shows that as $$x$$ approaches the asymptotes, the value of $$y$$ tends to $$\infty$$ or $$-\infty$$. Would you like more details or have any other questions? ### Relative Questions: 1. How do vertical asymptotes affect the behavior of the graph? 2. Why is the function undefined at certain $$x$$ values? 3. What happens to the function's value as $$x$$ approaches the vertical asymptotes? 4. How does the period of the function relate to the interval of $$x$$ chosen? 5. How would adding a vertical shift to the function affect the table of values? 6. How can you verify the values obtained in the table using a calculator? 7. What are the key characteristics of the cotangent function's graph based on the table? 8. How does scaling the function vertically by a factor of 2 affect the results? ### Tip: When analyzing trigonometric functions, always consider the presence of asymptotes and zeros, as these greatly influence the function's behavior and graph.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometry
Cotangent Function
Vertical Asymptotes
Formulas
Cotangent function: y = 2 \cot \left( x - \frac{3\pi}{4} \right)
Theorems
-
Suitable Grade Level
High School