Math Problem Statement

Solve the equation: sin^2(2x) - 5sin(2x)cos(2x) + 6cos^2(2x) = 0

Solution

The given equation is:

sin2(2x)5sin(2x)cos(2x)+6cos2(2x)=0\sin^2(2x) - 5\sin(2x)\cos(2x) + 6\cos^2(2x) = 0

Solution Steps:

  1. Rewrite using a trigonometric identity: Use sin2(2x)+cos2(2x)=1\sin^2(2x) + \cos^2(2x) = 1 to replace sin2(2x)\sin^2(2x) in the equation: (1cos2(2x))5sin(2x)cos(2x)+6cos2(2x)=0(1 - \cos^2(2x)) - 5\sin(2x)\cos(2x) + 6\cos^2(2x) = 0

  2. Simplify: Expand and combine like terms: 1cos2(2x)5sin(2x)cos(2x)+6cos2(2x)=01 - \cos^2(2x) - 5\sin(2x)\cos(2x) + 6\cos^2(2x) = 0 1+5cos2(2x)5sin(2x)cos(2x)=01 + 5\cos^2(2x) - 5\sin(2x)\cos(2x) = 0

  3. Factorize: Let cos(2x)=u\cos(2x) = u and sin(2x)=1u2\sin(2x) = \sqrt{1-u^2}. Substitute and solve the quadratic.

Would you like to proceed step by step into the detailed calculations? Or would you prefer I jump to the solutions for xx?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Quadratic Equations

Formulas

sin^2(x) + cos^2(x) = 1
Quadratic equation: ax^2 + bx + c = 0

Theorems

Pythagorean identity
Quadratic formula

Suitable Grade Level

Grades 10-12