Math Problem Statement

Solve the given equation. (Enter your answers as a comma-separated list. Let k be any integer. Round terms to three decimal places where appropriate. If there is no solution, enter NO SOLUTION.)

2 sin2(𝜃) + cos(𝜃) = 1

Solution

To solve the equation 2sin2(θ)+cos(θ)=12 \sin^2(\theta) + \cos(\theta) = 1:

Step 1: Rewrite sin2(θ)\sin^2(\theta) using the Pythagorean identity

The Pythagorean identity is: sin2(θ)=1cos2(θ)\sin^2(\theta) = 1 - \cos^2(\theta) Substitute this into the equation: 2(1cos2(θ))+cos(θ)=12(1 - \cos^2(\theta)) + \cos(\theta) = 1

Step 2: Simplify the equation

22cos2(θ)+cos(θ)=12 - 2\cos^2(\theta) + \cos(\theta) = 1 2cos2(θ)+cos(θ)+1=0-2\cos^2(\theta) + \cos(\theta) + 1 = 0

Step 3: Rearrange into standard quadratic form

2cos2(θ)cos(θ)1=02\cos^2(\theta) - \cos(\theta) - 1 = 0

Step 4: Solve the quadratic equation

Let x=cos(θ)x = \cos(\theta), so the equation becomes: 2x2x1=02x^2 - x - 1 = 0 Solve using the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} Here, a=2a = 2, b=1b = -1, c=1c = -1. Substituting: x=(1)±(1)24(2)(1)2(2)x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(2)(-1)}}{2(2)} x=1±1+84x = \frac{1 \pm \sqrt{1 + 8}}{4} x=1±94x = \frac{1 \pm \sqrt{9}}{4} x=1±34x = \frac{1 \pm 3}{4} x=1+34=1orx=134=12x = \frac{1 + 3}{4} = 1 \quad \text{or} \quad x = \frac{1 - 3}{4} = -\frac{1}{2}

Step 5: Back-substitute x=cos(θ)x = \cos(\theta)

cos(θ)=1orcos(θ)=12\cos(\theta) = 1 \quad \text{or} \quad \cos(\theta) = -\frac{1}{2}

Step 6: Solve for θ\theta

  1. If cos(θ)=1\cos(\theta) = 1: θ=0+2kπ,kZ\theta = 0 + 2k\pi, \quad k \in \mathbb{Z}

  2. If cos(θ)=12\cos(\theta) = -\frac{1}{2}: θ=ππ3+2kπ=2π3+2kπ,kZ\theta = \pi - \frac{\pi}{3} + 2k\pi = \frac{2\pi}{3} + 2k\pi, \quad k \in \mathbb{Z} or θ=π+π3+2kπ=4π3+2kπ,kZ\theta = \pi + \frac{\pi}{3} + 2k\pi = \frac{4\pi}{3} + 2k\pi, \quad k \in \mathbb{Z}

Final Answer:

θ=0+2kπ,2π3+2kπ,4π3+2kπ,kZ\theta = 0 + 2k\pi, \, \frac{2\pi}{3} + 2k\pi, \, \frac{4\pi}{3} + 2k\pi, \quad k \in \mathbb{Z}

Let me know if you want further clarification or visual steps.


Expanding Questions:

  1. How does the Pythagorean identity help simplify trigonometric equations?
  2. Why is the quadratic formula useful in solving trigonometric equations?
  3. What is the general solution for cos(θ)=12\cos(\theta) = -\frac{1}{2}?
  4. How can you verify these solutions on a unit circle?
  5. What is the significance of the parameter kk in the general solution?

Tip: Always remember the Pythagorean identities to rewrite and simplify trigonometric expressions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Quadratic Equations
Pythagorean Identity

Formulas

Pythagorean identity: sin²(θ) = 1 - cos²(θ)
Quadratic formula: x = (-b ± √(b² - 4ac)) / 2a

Theorems

Pythagorean Identity
Solutions to Quadratic Equations

Suitable Grade Level

Grades 10-12