Math Problem Statement

√(x2 + 12y) + √(y2 + 12x) = 33 x + y =23 Calcular √(2x-y)

a)3 b)2 c)5 d)7 e)4

Solution

We are given the system of equations:

  1. x2+12y+y2+12x=33\sqrt{x^2 + 12y} + \sqrt{y^2 + 12x} = 33
  2. x+y=23x + y = 23

We are asked to find 2xy\sqrt{2x - y}.

Step 1: Solve for xx and yy

From the second equation, x+y=23x + y = 23, we can express yy in terms of xx:

y=23xy = 23 - x

Step 2: Substitute y=23xy = 23 - x into the first equation

Substitute y=23xy = 23 - x into the first equation:

x2+12(23x)+(23x)2+12x=33\sqrt{x^2 + 12(23 - x)} + \sqrt{(23 - x)^2 + 12x} = 33

Simplify both expressions under the square roots:

x2+27612x+(23x)2+12x=33\sqrt{x^2 + 276 - 12x} + \sqrt{(23 - x)^2 + 12x} = 33

For (23x)2(23 - x)^2, expand it:

(23x)2=52946x+x2(23 - x)^2 = 529 - 46x + x^2

Substitute this into the second square root:

x2+27612x+52946x+x2+12x=33\sqrt{x^2 + 276 - 12x} + \sqrt{529 - 46x + x^2 + 12x} = 33

Simplify the second square root:

x2+27612x+52934x+x2=33\sqrt{x^2 + 276 - 12x} + \sqrt{529 - 34x + x^2} = 33

Step 3: Solve the system numerically

Solving this system of equations by substitution or trial and error will help us find xx and yy. Once we find xx and yy, we can use them to find 2xy\sqrt{2x - y}.

Let's calculate the approximate values of xx and yy.The solutions for xx are x=10x = 10 and x=13x = 13.

Step 4: Find the corresponding values of yy

From x+y=23x + y = 23, we can calculate yy:

  • If x=10x = 10, then y=2310=13y = 23 - 10 = 13.
  • If x=13x = 13, then y=2313=10y = 23 - 13 = 10.

Step 5: Calculate 2xy\sqrt{2x - y}

Now we will compute 2xy\sqrt{2x - y} for both pairs (x,y)=(10,13)(x, y) = (10, 13) and (x,y)=(13,10)(x, y) = (13, 10):

  1. For x=10x = 10 and y=13y = 13: 2xy=2(10)13=2013=7\sqrt{2x - y} = \sqrt{2(10) - 13} = \sqrt{20 - 13} = \sqrt{7}

  2. For x=13x = 13 and y=10y = 10: 2xy=2(13)10=2610=16=4\sqrt{2x - y} = \sqrt{2(13) - 10} = \sqrt{26 - 10} = \sqrt{16} = 4

Conclusion

The correct value of 2xy\sqrt{2x - y} is 4\boxed{4}.

Let me know if you want further details or have any questions!


Here are 5 related questions for further practice:

  1. Solve x2+15y+y2+15x=40\sqrt{x^2 + 15y} + \sqrt{y^2 + 15x} = 40 and x+y=30x + y = 30.
  2. Find the value of x+2y\sqrt{x + 2y} given x+y=25x + y = 25 and x2+y2=650x^2 + y^2 = 650.
  3. Solve the system x2+3y+y2+3x=15\sqrt{x^2 + 3y} + \sqrt{y^2 + 3x} = 15 and x+y=10x + y = 10.
  4. If x+y=20x + y = 20 and x2+y2+xy=30\sqrt{x^2 + y^2 + xy} = 30, find 2xy\sqrt{2x - y}.
  5. Solve x2+5y+y2+5x=20\sqrt{x^2 + 5y} + \sqrt{y^2 + 5x} = 20 and x+y=15x + y = 15.

Tip: When solving equations with square roots, isolating one root at a time can simplify the process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
System of Equations
Radical Expressions

Formulas

√(x^2 + 12y) + √(y^2 + 12x) = 33
x + y = 23
√(2x - y)

Theorems

Basic Algebraic Substitution
Square Root Properties

Suitable Grade Level

Grades 9-12