Math Problem Statement

Both of your answers are incorrect.​ First, simplify the given expression using De​ Moivre's Theorem. According to De​ Moivre's Theorem, if

zequals

r e Superscript i theta

is a complex​ number, then

z Superscript n

equalsr Superscript n Baseline e Superscript i left parenthesis n theta right parenthesis

.

To use De​ Moivre's Theorem, first convert the complex number to exponential​ form,

r e Superscript i theta

.

​Then, apply De​ Moivre's Theorem and simplify.​ Next, to write the given expression in rectangular​ form,

x plus y i

​,

convert the complex number in exponential form to polar form.​ Then, evaluate the angles and expand. Be sure that

theta

is in the range

0less than or equals

thetaless than2

Solution

Let's solve (14i)4(\sqrt{14} - i)^4 using De Moivre's Theorem.

Step 1: Convert to Exponential Form

To use De Moivre's Theorem, we need the complex number in polar form reiθre^{i\theta}.

Compute the modulus rr:

r=(14)2+(1)2=14+1=15r = \sqrt{(\sqrt{14})^2 + (-1)^2} = \sqrt{14 + 1} = \sqrt{15}

Compute the argument θ\theta:

θ=tan1(114)\theta = \tan^{-1}\left(\frac{-1}{\sqrt{14}}\right)

We need to ensure that θ\theta is in the correct range 0θ<2π0 \leq \theta < 2\pi. Since 14i\sqrt{14} - i is in the fourth quadrant, the angle will be negative: θ=tan1(114)\theta = -\tan^{-1}\left(\frac{1}{\sqrt{14}}\right)

Write the number in exponential form:

14i=15eitan1(114)\sqrt{14} - i = \sqrt{15} e^{-i \tan^{-1}\left(\frac{1}{\sqrt{14}}\right)}

Step 2: Apply De Moivre's Theorem

According to De Moivre's Theorem: (15eitan1(114))4=(15)4ei4tan1(114)(\sqrt{15} e^{-i \tan^{-1}\left(\frac{1}{\sqrt{14}}\right)})^4 = (\sqrt{15})^4 e^{-i \cdot 4 \tan^{-1}\left(\frac{1}{\sqrt{14}}\right)}

Simplifying the modulus and argument: (15)4=(15)2=225(\sqrt{15})^4 = (15)^2 = 225 4tan1(114)4 \cdot -\tan^{-1}\left(\frac{1}{\sqrt{14}}\right)

Thus: (14i)4=225ei4tan1(114)(\sqrt{14} - i)^4 = 225 e^{-i \cdot 4 \tan^{-1}\left(\frac{1}{\sqrt{14}}\right)}

Step 3: Convert to Rectangular Form

To convert the exponential form back to rectangular form, we need to evaluate the trigonometric functions at the angle 4θ-4 \theta:

Compute cos(4θ)\cos(4\theta) and sin(4θ)\sin(4\theta):

First, find θ\theta: θ=tan1(114)0.267\theta = \tan^{-1}\left(\frac{1}{\sqrt{14}}\right) \approx 0.267

Now compute: 4θ40.267=1.0684\theta \approx 4 \cdot 0.267 = 1.068

Then: cos(4θ)cos(1.068)0.48\cos(4\theta) \approx \cos(1.068) \approx 0.48 sin(4θ)sin(1.068)0.877\sin(4\theta) \approx \sin(1.068) \approx 0.877

Thus: 225ei4θ=225(cos(4θ)isin(4θ))225(0.480.877i)225 e^{-i \cdot 4 \theta} = 225 (\cos(4\theta) - i \sin(4\theta)) \approx 225 (0.48 - 0.877i)

Final Rectangular Form:

2250.48=108225 \cdot 0.48 = 108 225(0.877)=197.325225 \cdot (-0.877) = -197.325

Thus: 225ei4θ108197.325i225 e^{-i \cdot 4 \theta} \approx 108 - 197.325i

Final Answers:

  • Rectangular form: 108197.325i108 - 197.325i
  • Exponential form: 225ei4tan1(114)225 e^{-i \cdot 4 \tan^{-1}\left(\frac{1}{\sqrt{14}}\right)}

Do you want any further details or have any questions? Here are some more questions you might find helpful:

  1. How do you derive trigonometric identities for higher multiples of an angle?
  2. What is the significance of De Moivre's Theorem in complex analysis?
  3. Can you explain the process of converting from polar to rectangular form in more detail?
  4. How do you ensure the angle is in the correct range when using inverse trigonometric functions?
  5. What are the common pitfalls to avoid when dealing with complex numbers in exponential form?

Tip: Always double-check the quadrant of your angle when converting from rectangular to polar form to ensure the correct sign and value of the argument θ\theta.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
De Moivre's Theorem
Exponential Form
Polar Form
Rectangular Form

Formulas

De Moivre's Theorem

Theorems

De Moivre's Theorem

Suitable Grade Level

Advanced High School