Math Problem Statement

Solve each triangle. Round each side length to the nearest unit and each angle to the nearest degree.

Solution

Let's solve each triangle step by step.


Problem 1

We have a right triangle PQR\triangle PQR, where:

  • p=19cmp = 19 \, \text{cm} (adjacent side),
  • PQR=37\angle PQR = 37^\circ,
  • PRQ=90\angle PRQ = 90^\circ,
  • We need to find qq (opposite side), rr (hypotenuse), and the missing angle QPR\angle QPR.

  1. Find the hypotenuse rr: Use the cosine function: cos(37)=adjacenthypotenuse=pr\cos(37^\circ) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{p}{r} r=pcos(37)=19cos(37)r = \frac{p}{\cos(37^\circ)} = \frac{19}{\cos(37^\circ)} Using cos(37)0.7986\cos(37^\circ) \approx 0.7986: r190.798624cmr \approx \frac{19}{0.7986} \approx 24 \, \text{cm}

  2. Find the opposite side qq: Use the tangent function: tan(37)=oppositeadjacent=qp\tan(37^\circ) = \frac{\text{opposite}}{\text{adjacent}} = \frac{q}{p} q=ptan(37)=19tan(37)q = p \cdot \tan(37^\circ) = 19 \cdot \tan(37^\circ) Using tan(37)0.7536\tan(37^\circ) \approx 0.7536: q190.753614cmq \approx 19 \cdot 0.7536 \approx 14 \, \text{cm}

  3. Find the missing angle QPR\angle QPR: In a triangle, the sum of angles is 180180^\circ. Since one angle is 9090^\circ: QPR=9037=53\angle QPR = 90^\circ - 37^\circ = 53^\circ


Final Answer for Problem 1:

  • r24cmr \approx 24 \, \text{cm},
  • q14cmq \approx 14 \, \text{cm},
  • QPR=53\angle QPR = 53^\circ.

Problem 2

We have a right triangle MNL\triangle MNL, where:

  • m=37cmm = 37 \, \text{cm} (hypotenuse),
  • MNL=51\angle MNL = 51^\circ,
  • MLN=90\angle MLN = 90^\circ,
  • We need to find nn (adjacent side), cc (opposite side), and the missing angle NML\angle NML.

  1. Find the adjacent side nn: Use the cosine function: cos(51)=adjacenthypotenuse=nm\cos(51^\circ) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{n}{m} n=mcos(51)=37cos(51)n = m \cdot \cos(51^\circ) = 37 \cdot \cos(51^\circ) Using cos(51)0.6293\cos(51^\circ) \approx 0.6293: n370.629323cmn \approx 37 \cdot 0.6293 \approx 23 \, \text{cm}

  2. Find the opposite side cc: Use the sine function: sin(51)=oppositehypotenuse=cm\sin(51^\circ) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{c}{m} c=msin(51)=37sin(51)c = m \cdot \sin(51^\circ) = 37 \cdot \sin(51^\circ) Using sin(51)0.7771\sin(51^\circ) \approx 0.7771: c370.777129cmc \approx 37 \cdot 0.7771 \approx 29 \, \text{cm}

  3. Find the missing angle NML\angle NML: In a triangle, the sum of angles is 180180^\circ. Since one angle is 9090^\circ: NML=9051=39\angle NML = 90^\circ - 51^\circ = 39^\circ


Final Answer for Problem 2:

  • n23cmn \approx 23 \, \text{cm},
  • c29cmc \approx 29 \, \text{cm},
  • NML=39\angle NML = 39^\circ.

Summary:

Problem 1:

  • r24cm,q14cm,QPR=53r \approx 24 \, \text{cm}, q \approx 14 \, \text{cm}, \angle QPR = 53^\circ.

Problem 2:

  • n23cm,c29cm,NML=39n \approx 23 \, \text{cm}, c \approx 29 \, \text{cm}, \angle NML = 39^\circ.

Would you like a detailed breakdown for any step?


Follow-up Questions:

  1. How can you use trigonometric functions to solve any right triangle?
  2. What is the significance of the complementary angles in a right triangle?
  3. How would the solution change if the given angle were obtuse?
  4. Can the Pythagorean theorem be used to verify these calculations?
  5. What are other real-life applications of solving right triangles?

Tip:

Always double-check your trigonometric ratios and angle measures when solving triangles to avoid rounding errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Right Triangle Properties
Angle Sum Property

Formulas

cos(θ) = adjacent / hypotenuse
sin(θ) = opposite / hypotenuse
tan(θ) = opposite / adjacent
Angle sum of a triangle = 180°

Theorems

Pythagorean Theorem
Trigonometric Ratios

Suitable Grade Level

Grades 8-10