Math Problem Statement

Решить неравенство 15 / (4 + 3x - x^2) > 1 методом интервалов, пользуясь свойством непрерывности функции.

Solution

To solve the inequality 154+3xx2>1\frac{15}{4 + 3x - x^2} > 1 using the interval method, let's break the process into steps:

1. Rewrite the inequality

Rewriting the inequality gives: 154+3xx21>0\frac{15}{4 + 3x - x^2} - 1 > 0 Simplify the expression: 15(4+3xx2)4+3xx2>0\frac{15 - (4 + 3x - x^2)}{4 + 3x - x^2} > 0 x23x+114+3xx2>0\frac{-x^2 - 3x + 11}{4 + 3x - x^2} > 0

2. Factorize the numerator and denominator

The numerator is x23x+11-x^2 - 3x + 11, and the denominator is 4+3xx24 + 3x - x^2. Factoring both gives:

  • Numerator: Solve x23x+11=0-x^2 - 3x + 11 = 0. Using the quadratic formula: x=(3)±(3)24(1)(11)2(1)x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(-1)(11)}}{2(-1)} x=3±9+442=3±532x = \frac{3 \pm \sqrt{9 + 44}}{-2} = \frac{3 \pm \sqrt{53}}{-2} x1=3532,x2=3+532x_1 = \frac{3 - \sqrt{53}}{-2}, \quad x_2 = \frac{3 + \sqrt{53}}{-2}

  • Denominator: Solve 4+3xx2=04 + 3x - x^2 = 0. Using the quadratic formula: x=3±324(1)(4)2(1)x = \frac{-3 \pm \sqrt{3^2 - 4(1)(-4)}}{2(1)} x=3±9+162=3±52x = \frac{-3 \pm \sqrt{9 + 16}}{2} = \frac{-3 \pm 5}{2} x1=1,x2=4x_1 = 1, \quad x_2 = -4

3. Critical points

The critical points from both the numerator and denominator are: x=3532,x=3+532,x=1,x=4x = \frac{3 - \sqrt{53}}{-2}, \quad x = \frac{3 + \sqrt{53}}{-2}, \quad x = 1, \quad x = -4

4. Interval testing

Divide the number line into intervals based on the critical points. Test the sign of the expression x23x+114+3xx2\frac{-x^2 - 3x + 11}{4 + 3x - x^2} in each interval.

The solution to x23x+114+3xx2>0\frac{-x^2 - 3x + 11}{4 + 3x - x^2} > 0 will include intervals where the expression is positive.

5. Analyze and confirm

The correct solution is: x(,1)(4,+)x \in (-\infty, -1) \cup (4, +\infty)

Final Answer:

x(,1)(4,+)\boxed{x \in (-\infty, -1) \cup (4, +\infty)}

Would you like a deeper explanation of any step?

Questions for Practice:

  1. How can you simplify rational inequalities like this one further?
  2. What is the significance of critical points in interval testing?
  3. How do you determine when a rational expression changes signs?
  4. What role does the quadratic formula play in solving inequalities?
  5. How can you visually confirm solutions using graphs?

Tip:

Always check for excluded values in the denominator to ensure your intervals are accurate.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Rational Inequalities
Interval Method
Critical Points

Formulas

Quadratic formula: x = (-b ± √(b² - 4ac)) / 2a

Theorems

Properties of continuous functions

Suitable Grade Level

Grades 9-12