Math Problem Statement
Ratkaise yhtälö:
a) x^2 - 5 = 4x
b) x^2 + 1/5x - 4/5 = 0
Solution
Let's solve the given equations step-by-step:
a) Solve x2−5=4x
-
Rearrange the equation to standard quadratic form:
x2−4x−5=0
-
Use the quadratic formula:
x=2a−b±b2−4ac
Here:
- a=1,
- b=−4,
- c=−5.
-
Substitute into the formula:
x=2(1)−(−4)±(−4)2−4(1)(−5)
Simplify step-by-step:
x=24±16+20
x=24±36
-
Simplify further:
x=24±6
Solve for both cases:
- x=24+6=210=5
- x=24−6=2−2=−1
-
Solution:
x=5orx=−1
b) Solve x2+51x−54=0
-
Use the quadratic formula:
x=2a−b±b2−4ac
Here:
- a=1,
- b=51,
- c=−54.
-
Substitute into the formula:
x=2(1)−(51)±(51)2−4(1)(−54)
-
Simplify step-by-step:
- First calculate the discriminant (b2−4ac):
(51)2−4⋅1⋅(−54)
=251+516
Convert 516 to have a denominator of 25:
516=2580
So:
251+2580=2581
-
Update the quadratic formula:
x=2−51±2581
Simplify the square root:
2581=59
So:
x=2−51±59
-
Solve for both cases:
-
Case 1: x=2−51+59:
x=258=108=54
-
Case 2: x=2−51−59:
x=2−510=10−10=−1
-
Solution:
x=54orx=−1
Final Solutions:
a) x=5 or x=−1
b) x=54 or x=−1
Would you like a more detailed explanation for any step? Let me know! Here are 5 related questions:
- How is the quadratic formula derived?
- What are the steps to factorize a quadratic equation instead of using the formula?
- How do you determine the nature of roots using the discriminant?
- Can you solve a quadratic equation graphically?
- How can the quadratic formula be applied to real-world problems?
Tip: Always check solutions by substituting the values back into the original equation.