Math Problem Statement

Ratkaise yhtälö: a) x^2 - 5 = 4x b) x^2 + 1/5x - 4/5 = 0

Solution

Let's solve the given equations step-by-step:


a) Solve x25=4xx^2 - 5 = 4x

  1. Rearrange the equation to standard quadratic form: x24x5=0x^2 - 4x - 5 = 0

  2. Use the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} Here:

    • a=1a = 1,
    • b=4b = -4,
    • c=5c = -5.
  3. Substitute into the formula: x=(4)±(4)24(1)(5)2(1)x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(-5)}}{2(1)}

    Simplify step-by-step: x=4±16+202x = \frac{4 \pm \sqrt{16 + 20}}{2} x=4±362x = \frac{4 \pm \sqrt{36}}{2}

  4. Simplify further: x=4±62x = \frac{4 \pm 6}{2}

    Solve for both cases:

    • x=4+62=102=5x = \frac{4 + 6}{2} = \frac{10}{2} = 5
    • x=462=22=1x = \frac{4 - 6}{2} = \frac{-2}{2} = -1
  5. Solution: x=5orx=1x = 5 \quad \text{or} \quad x = -1


b) Solve x2+15x45=0x^2 + \frac{1}{5}x - \frac{4}{5} = 0

  1. Use the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} Here:

    • a=1a = 1,
    • b=15b = \frac{1}{5},
    • c=45c = -\frac{4}{5}.
  2. Substitute into the formula: x=(15)±(15)24(1)(45)2(1)x = \frac{-\left(\frac{1}{5}\right) \pm \sqrt{\left(\frac{1}{5}\right)^2 - 4(1)\left(-\frac{4}{5}\right)}}{2(1)}

  3. Simplify step-by-step:

    • First calculate the discriminant (b24acb^2 - 4ac): (15)241(45)\left(\frac{1}{5}\right)^2 - 4 \cdot 1 \cdot \left(-\frac{4}{5}\right) =125+165= \frac{1}{25} + \frac{16}{5} Convert 165\frac{16}{5} to have a denominator of 25: 165=8025\frac{16}{5} = \frac{80}{25} So: 125+8025=8125\frac{1}{25} + \frac{80}{25} = \frac{81}{25}
  4. Update the quadratic formula: x=15±81252x = \frac{-\frac{1}{5} \pm \sqrt{\frac{81}{25}}}{2}

    Simplify the square root: 8125=95\sqrt{\frac{81}{25}} = \frac{9}{5}

    So: x=15±952x = \frac{-\frac{1}{5} \pm \frac{9}{5}}{2}

  5. Solve for both cases:

    • Case 1: x=15+952x = \frac{-\frac{1}{5} + \frac{9}{5}}{2}: x=852=810=45x = \frac{\frac{8}{5}}{2} = \frac{8}{10} = \frac{4}{5}

    • Case 2: x=15952x = \frac{-\frac{1}{5} - \frac{9}{5}}{2}: x=1052=1010=1x = \frac{-\frac{10}{5}}{2} = \frac{-10}{10} = -1

  6. Solution: x=45orx=1x = \frac{4}{5} \quad \text{or} \quad x = -1


Final Solutions:

a) x=5x = 5 or x=1x = -1
b) x=45x = \frac{4}{5} or x=1x = -1


Would you like a more detailed explanation for any step? Let me know! Here are 5 related questions:

  1. How is the quadratic formula derived?
  2. What are the steps to factorize a quadratic equation instead of using the formula?
  3. How do you determine the nature of roots using the discriminant?
  4. Can you solve a quadratic equation graphically?
  5. How can the quadratic formula be applied to real-world problems?

Tip: Always check solutions by substituting the values back into the original equation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Equations
Solving Quadratic Equations

Formulas

Quadratic formula: x = (-b ± √(b^2 - 4ac)) / 2a
Standard quadratic form: ax^2 + bx + c = 0

Theorems

Quadratic Formula Theorem

Suitable Grade Level

Grades 8-10