Math Problem Statement

x2-6x-1+k(2x+1)=0

Solution

To solve the given equation:

x26x1+k(2x+1)=0,x^2 - 6x - 1 + k(2x + 1) = 0,

we aim to simplify and solve it for xx. Here's how:


Step 1: Expand the equation

Expand k(2x+1)k(2x + 1):

x26x1+2kx+k=0x^2 - 6x - 1 + 2kx + k = 0

Combine like terms:

x2+(6+2k)x+(1+k)=0.x^2 + (-6 + 2k)x + (-1 + k) = 0.

The quadratic equation becomes:

x2+(6+2k)x+(1+k)=0.x^2 + (-6 + 2k)x + (-1 + k) = 0.


Step 2: Solve using the quadratic formula

The quadratic formula is:

x=b±b24ac2a,x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},

where:

  • a=1a = 1,
  • b=6+2kb = -6 + 2k,
  • c=1+kc = -1 + k.

Substitute these into the formula:

x=(6+2k)±(6+2k)24(1)(1+k)2(1).x = \frac{-(-6 + 2k) \pm \sqrt{(-6 + 2k)^2 - 4(1)(-1 + k)}}{2(1)}.

Simplify further:

x=62k±(6+2k)24(1+k)2.x = \frac{6 - 2k \pm \sqrt{(-6 + 2k)^2 - 4(-1 + k)}}{2}.


Step 3: Simplify the discriminant

The discriminant (DD) is:

D=(6+2k)24(1)(1+k).D = (-6 + 2k)^2 - 4(1)(-1 + k).

Expand (6+2k)2(-6 + 2k)^2:

(6+2k)2=3624k+4k2.(-6 + 2k)^2 = 36 - 24k + 4k^2.

Simplify 4(1+k)4(-1 + k):

4(1+k)=4+4k.4(-1 + k) = -4 + 4k.

Combine:

D=3624k+4k2+44k.D = 36 - 24k + 4k^2 + 4 - 4k.

D=4028k+4k2.D = 40 - 28k + 4k^2.


Final Quadratic Solution:

The solution becomes:

x=62k±4028k+4k22.x = \frac{6 - 2k \pm \sqrt{40 - 28k + 4k^2}}{2}.

This represents the roots of the equation in terms of kk.


Would you like me to:

  1. Explore the conditions for real roots (discriminant D0D \geq 0)?
  2. Solve for specific kk values?
  3. Analyze symmetry or special cases?
  4. Graph the equation?
  5. Verify solutions for specific numerical inputs?

Tip: Always check the discriminant (DD) when solving quadratics—it determines the nature of the roots!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Equations
Discriminant Analysis

Formulas

Quadratic formula: x = (-b ± √(b² - 4ac)) / 2a
Discriminant: D = b² - 4ac

Theorems

Quadratic formula theorem

Suitable Grade Level

Grades 9-11