Math Problem Statement
Solve system of equations using Newton's method
Solution
To solve this system of equations using Newton's method, follow these steps:
Step 1: Define the system of equations
The given equations are:
We aim to solve , where:
Step 2: Compute the Jacobian matrix
The Jacobian matrix is:
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}.$$ Compute the partial derivatives: - $$\frac{\partial f_1}{\partial x_1} = -4x_2$$ - $$\frac{\partial f_1}{\partial x_2} = -4x_1$$ - $$\frac{\partial f_2}{\partial x_1} = -3x_1^2$$ - $$\frac{\partial f_2}{\partial x_2} = -2x_2$$ Thus: $$J(\mathbf{x}) = \begin{bmatrix} -4x_2 & -4x_1 \\ -3x_1^2 & -2x_2 \end{bmatrix}.$$ ### Step 3: Apply Newton's iteration formula The Newton's method update is: $$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - J(\mathbf{x}^{(k)})^{-1} F(\mathbf{x}^{(k)}).$$ Given the starting point $$\mathbf{x}^{(0)} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$, compute one iteration. ### Step 4: Evaluate $$F(\mathbf{x}^{(0)})$$ $$F(\mathbf{x}^{(0)}) = \begin{bmatrix} 6 - 4(2)(-2) \\ 3 - 2^3 - (-2)^2 \end{bmatrix} = \begin{bmatrix} 6 - (-16) \\ 3 - 8 - 4 \end{bmatrix} = \begin{bmatrix} 22 \\ -9 \end{bmatrix}.$$ ### Step 5: Evaluate $$J(\mathbf{x}^{(0)})$$ $$J(\mathbf{x}^{(0)}) = \begin{bmatrix} -4(-2) & -4(2) \\ -3(2)^2 & -2(-2) \end{bmatrix} = \begin{bmatrix} 8 & -8 \\ -12 & 4 \end{bmatrix}.$$ ### Step 6: Solve for $$\Delta \mathbf{x} = J^{-1} F(\mathbf{x}^{(0)})$$ The inverse of $$J(\mathbf{x}^{(0)})$$ is computed as: $$J^{-1} = \frac{1}{\text{det}(J)} \begin{bmatrix} 4 & 8 \\ 12 & 8 \end{bmatrix},$$ where \( \text{det}(J) = (8)(8)-(3*Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Newton's method
Nonlinear equations
Linear algebra
Jacobian matrix
Formulas
Newton's iteration formula: x^(k+1) = x^(k) - J(x^(k))^-1 * F(x^(k))
Jacobian matrix: J(x) = [[∂f1/∂x1, ∂f1/∂x2], [∂f2/∂x1, ∂f2/∂x2]]
Determinant and inverse of 2x2 matrix
Theorems
Newton's method for solving nonlinear systems
Suitable Grade Level
Undergraduate - Junior/Senior (CS/Mathematics/Engineering students)
Related Recommendation
Solving Nonlinear System with Newton-Raphson Method for x^2 + y^2 = 4, x^2 + y^2 = 8
Solving a Nonlinear System Using Newton-Raphson Method: x^2 - y^2 = 4, x^2 + y^2 = 8
Solving Nonlinear System Using Newton-Raphson Method
Newton's Method for Minimizing a Quadratic Function with Symmetric Positive Definite Matrix
Solve Nonlinear Equation System Using Newton's Method: x^2 + y^2 - 25, x^2 - y^2 - 9