Math Problem Statement

Solve the following equation by Gauss - seidel method upto three iterations

5x + y - z = 10 2x + 4y + z = 14 x + y + 8z = 20

Third iterations answer is x = 2, y = 2, z = 2

Solution

To solve the given system of equations using the Gauss-Seidel method, we need to iteratively approximate the values of xx, yy, and zz.

The system of equations is:

  1. 5x+yz=105x + y - z = 10
  2. 2x+4y+z=142x + 4y + z = 14
  3. x+y+8z=20x + y + 8z = 20

To apply the Gauss-Seidel method, we first rewrite each equation to solve for the primary variable:

  1. x=10y+z5x = \frac{10 - y + z}{5}
  2. y=142xz4y = \frac{14 - 2x - z}{4}
  3. z=20xy8z = \frac{20 - x - y}{8}

Let's perform the iterations starting with initial guesses x(0)=0x^{(0)} = 0, y(0)=0y^{(0)} = 0, z(0)=0z^{(0)} = 0, updating each variable in sequence:

First Iteration

Using initial guesses x(0)=0x^{(0)} = 0, y(0)=0y^{(0)} = 0, z(0)=0z^{(0)} = 0:

  1. Update xx: x(1)=100+05=2.0x^{(1)} = \frac{10 - 0 + 0}{5} = 2.0

  2. Update yy using x(1)x^{(1)}: y(1)=142(2.0)04=104=2.5y^{(1)} = \frac{14 - 2(2.0) - 0}{4} = \frac{10}{4} = 2.5

  3. Update zz using x(1)x^{(1)} and y(1)y^{(1)}: z(1)=202.02.58=15.58=1.9375z^{(1)} = \frac{20 - 2.0 - 2.5}{8} = \frac{15.5}{8} = 1.9375

Second Iteration

Using updated values x(1)=2.0x^{(1)} = 2.0, y(1)=2.5y^{(1)} = 2.5, z(1)=1.9375z^{(1)} = 1.9375:

  1. Update xx: x(2)=102.5+1.93755=9.43755=1.8875x^{(2)} = \frac{10 - 2.5 + 1.9375}{5} = \frac{9.4375}{5} = 1.8875

  2. Update yy using x(2)x^{(2)}: y(2)=142(1.8875)1.93754=8.28754=2.071875y^{(2)} = \frac{14 - 2(1.8875) - 1.9375}{4} = \frac{8.2875}{4} = 2.071875

  3. Update zz using x(2)x^{(2)} and y(2)y^{(2)}: z(2)=201.88752.0718758=16.0406258=2.005078125z^{(2)} = \frac{20 - 1.8875 - 2.071875}{8} = \frac{16.040625}{8} = 2.005078125

Third Iteration

Using updated values x(2)=1.8875x^{(2)} = 1.8875, y(2)=2.071875y^{(2)} = 2.071875, z(2)=2.005078125z^{(2)} = 2.005078125:

  1. Update xx: x(3)=102.071875+2.0050781255=9.9332031255=1.986640625x^{(3)} = \frac{10 - 2.071875 + 2.005078125}{5} = \frac{9.933203125}{5} = 1.986640625

  2. Update yy using x(3)x^{(3)}: y(3)=142(1.986640625)2.0050781254=8.0216406254=1.987109375y^{(3)} = \frac{14 - 2(1.986640625) - 2.005078125}{4} = \frac{8.021640625}{4} = 1.987109375

  3. Update zz using x(3)x^{(3)} and y(3)y^{(3)}: z(3)=201.9866406251.9871093758=16.026258=2.00328125z^{(3)} = \frac{20 - 1.986640625 - 1.987109375}{8} = \frac{16.02625}{8} = 2.00328125

After three iterations, the values are approximately x1.9866x \approx 1.9866, y1.9871y \approx 1.9871, and z2.0033z \approx 2.0033. The solution (x,y,z)=(2,2,2)(x, y, z) = (2, 2, 2) provided seems to be an intended target for illustration or may reflect further iterations that continue refining these estimates closer to integers.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Numerical Methods
Iterative Methods
Gauss-Seidel Method
Linear Algebra

Formulas

x = (10 - y + z) / 5
y = (14 - 2x - z) / 4
z = (20 - x - y) / 8

Theorems

Convergence of Gauss-Seidel Method

Suitable Grade Level

Undergraduate Level (Numerical Methods, Engineering, or Advanced Mathematics)