Math Problem Statement

solve the equation 3xy+4=8y-2x for x in terms of y.

Solution

We are given the equation:

3xy+4=8y2x3xy + 4 = 8y - 2x

Steps to solve for xx in terms of yy:

  1. Move all terms involving xx to one side: 3xy+2x=8y43xy + 2x = 8y - 4

  2. Factor out xx on the left side: x(3y+2)=8y4x(3y + 2) = 8y - 4

  3. Solve for xx: x=8y43y+2x = \frac{8y - 4}{3y + 2}

Thus, the solution for xx in terms of yy is:

x=8y43y+2x = \frac{8y - 4}{3y + 2}

Would you like more details on any step or have further questions?

Related questions:

  1. How would the solution change if the coefficients were different?
  2. Can this expression for xx be simplified further?
  3. How can we graph the relationship between xx and yy?
  4. What happens if y=23y = -\frac{2}{3}?
  5. How would you solve the same equation for yy in terms of xx?

Tip:

When solving for a variable, always isolate the variable by factoring if possible, and ensure to move like terms to the same side of the equation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Linear Equations

Formulas

Solving for x: x = (8y - 4) / (3y + 2)

Theorems

Factoring in algebraic equations

Suitable Grade Level

Grades 8-10