Math Problem Statement

Hitunglah nilai dari limit berikut

Solution

Let's go through each limit problem step-by-step.


1. limx37\lim_{x \to 3} 7

This is a constant function, so the limit will be the same as the constant value:

limx37=7\lim_{x \to 3} 7 = 7


2. limx1(2x4x2)\lim_{x \to 1} (2x - 4x^2)

Direct substitution:

2(1)4(1)2=24=22(1) - 4(1)^2 = 2 - 4 = -2


3. limx22x2+4x+43x2\lim_{x \to 2} \frac{2x^2 + 4x + 4}{3x - 2}

Direct substitution first:

2(2)2+4(2)+43(2)2=8+8+462=204=5\frac{2(2)^2 + 4(2) + 4}{3(2) - 2} = \frac{8 + 8 + 4}{6 - 2} = \frac{20}{4} = 5


4. limx4x2+92x\lim_{x \to 4} \frac{\sqrt{x^2 + 9}}{2x}

Evaluate by direct substitution:

42+92(4)=16+98=258=58\frac{\sqrt{4^2 + 9}}{2(4)} = \frac{\sqrt{16 + 9}}{8} = \frac{\sqrt{25}}{8} = \frac{5}{8}


5. limx1x2+4x5x1\lim_{x \to 1} \frac{x^2 + 4x - 5}{x - 1}

Direct substitution gives:

12+4(1)511=00\frac{1^2 + 4(1) - 5}{1 - 1} = \frac{0}{0}

Since this is an indeterminate form, let's factor the numerator:

x2+4x5=(x1)(x+5)x^2 + 4x - 5 = (x - 1)(x + 5)

Now:

(x1)(x+5)x1=x+5(for x1)\frac{(x - 1)(x + 5)}{x - 1} = x + 5 \quad \text{(for } x \neq 1)

Now substitute x=1x = 1:

1+5=61 + 5 = 6


6. limx2x2+5x+6x23x10\lim_{x \to 2} \frac{x^2 + 5x + 6}{x^2 - 3x - 10}

Direct substitution gives:

22+5(2)+6223(2)10=4+10+64610=2012=53\frac{2^2 + 5(2) + 6}{2^2 - 3(2) - 10} = \frac{4 + 10 + 6}{4 - 6 - 10} = \frac{20}{-12} = -\frac{5}{3}


7. limx24x23x2+5\lim_{x \to 2} \frac{4 - x^2}{3 - \sqrt{x^2 + 5}}

Direct substitution gives:

422322+5=4439=00\frac{4 - 2^2}{3 - \sqrt{2^2 + 5}} = \frac{4 - 4}{3 - \sqrt{9}} = \frac{0}{0}

This is an indeterminate form. To resolve it, multiply the numerator and denominator by the conjugate:

4x23x2+53+x2+53+x2+5\frac{4 - x^2}{3 - \sqrt{x^2 + 5}} \cdot \frac{3 + \sqrt{x^2 + 5}}{3 + \sqrt{x^2 + 5}}

Now:

(4x2)(3+x2+5)9(x2+5)\frac{(4 - x^2)(3 + \sqrt{x^2 + 5})}{9 - (x^2 + 5)}

Since 4x2=(2x)(2+x)4 - x^2 = (2 - x)(2 + x), simplify the denominator:

9(x2+5)=4x2=(2x)(2+x)9 - (x^2 + 5) = 4 - x^2 = (2 - x)(2 + x)

Now cancel out (2x)(2+x)(2 - x)(2 + x) from the numerator and denominator, and substitute x=2x = 2:

3+22+5=3+9=3+3=63 + \sqrt{2^2 + 5} = 3 + \sqrt{9} = 3 + 3 = 6

Thus:

limx24x23x2+5=6\lim_{x \to 2} \frac{4 - x^2}{3 - \sqrt{x^2 + 5}} = 6


Final Answers

  1. 77
  2. 2-2
  3. 55
  4. 58\frac{5}{8}
  5. 66
  6. 53-\frac{5}{3}
  7. 66

Do you have any questions, or would you like further explanation on any of these problems?


Related Questions

  1. How do you handle indeterminate forms like 00\frac{0}{0} in limits?
  2. What are common techniques for factoring quadratic expressions?
  3. How does multiplying by the conjugate help in simplifying limits?
  4. Can L'Hôpital's rule be applied to all 00\frac{0}{0} cases?
  5. How can limits at infinity be handled differently from finite limits?

Tip

When direct substitution gives an indeterminate form, try simplifying the expression, factoring, or multiplying by the conjugate.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Direct Substitution
Factoring
Indeterminate Forms
Rationalization

Formulas

lim_{x→c} f(x)
Quadratic factoring: ax^2 + bx + c = (x - p)(x - q)
Conjugate multiplication for rationalization

Theorems

Limit Laws
Factoring Techniques
Rationalization Technique

Suitable Grade Level

High School (Grades 10-12)