Math Problem Statement

Solve this integral

Solution

To solve the integral given in the image, let's revisit the integral and evaluate it step-by-step.

The integral is: I=0πxsin2nxsin2nx+cos2nxdxI = \int_0^\pi \frac{x \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx

To solve this, we will use the substitution u=πxu = \pi - x. Let’s see how this helps us solve the integral:

  1. Substitution: Let u=πxu = \pi - x, then du=dxdu = -dx.

Rewriting the integral: I=0π(πu)sin2n(πu)sin2n(πu)+cos2n(πu)(du)I = \int_0^\pi \frac{(\pi - u) \sin^{2n} (\pi - u)}{\sin^{2n} (\pi - u) + \cos^{2n} (\pi - u)} (-du)

Since sin(πu)=sinu\sin(\pi - u) = \sin u and cos(πu)=cosu\cos(\pi - u) = -\cos u, we get: I=π0(πu)sin2nusin2nu+cos2nu(du)I = \int_\pi^0 \frac{(\pi - u) \sin^{2n} u}{\sin^{2n} u + \cos^{2n} u} (-du) I=0π(πu)sin2nusin2nu+cos2nuduI = \int_0^\pi \frac{(\pi - u) \sin^{2n} u}{\sin^{2n} u + \cos^{2n} u} \, du

Now, we have two expressions for the integral II: I=0πxsin2nxsin2nx+cos2nxdxI = \int_0^\pi \frac{x \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx I=0π(πx)sin2nxsin2nx+cos2nxdxI = \int_0^\pi \frac{(\pi - x) \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx

Adding these two expressions: 2I=0πxsin2nxsin2nx+cos2nxdx+0π(πx)sin2nxsin2nx+cos2nxdx2I = \int_0^\pi \frac{x \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx + \int_0^\pi \frac{(\pi - x) \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx 2I=0πxsin2nx+(πx)sin2nxsin2nx+cos2nxdx2I = \int_0^\pi \frac{x \sin^{2n} x + (\pi - x) \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx 2I=0ππsin2nxsin2nx+cos2nxdx2I = \int_0^\pi \frac{\pi \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx

Therefore: 2I=π0πsin2nxsin2nx+cos2nxdx2I = \pi \int_0^\pi \frac{\sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx

Since the integral on the right side is symmetric and periodic: 0πsin2nxsin2nx+cos2nxdx=π2\int_0^\pi \frac{\sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx = \frac{\pi}{2}

Thus: 2I=π(π2)2I = \pi \left( \frac{\pi}{2} \right) 2I=π222I = \frac{\pi^2}{2} I=π24I = \frac{\pi^2}{4}

So, the final answer is: I=π24I = \frac{\pi^2}{4}

If you have any further questions or need additional details, please let me know.

Here are 5 more questions you can ask:

  1. How to evaluate integrals involving trigonometric functions using substitutions?
  2. How to determine the number of roots of a polynomial equation?
  3. How to solve integrals using the method of symmetry?
  4. What is the Intermediate Value Theorem and how is it applied?
  5. How to find critical points of a function and their significance?

Tip: When solving integrals, always consider using symmetry and periodic properties of trigonometric functions to simplify the computation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral calculus
Trigonometric functions
Symmetry in integrals

Formulas

Integral of trigonometric functions

Theorems

-

Suitable Grade Level

Advanced Mathematics