Math Problem Statement
- Given : ( \int 6 x^{3} e^{x^{2}+3} d x ). Using integration by parts ( \left(\int u d v=u v-\int v d u\right) ) and letting ( u=f(x) ), ( d v=3 g(x) d x ), find ( h(x) ) if ( \int v d u=h(x)+C ) a.) ( 6 e^{x^{2}+3} ) b.) ( 3 e^{-3} e^{x^{2}} ) c.) ( \frac{3 e^{x^{2}+6}}{e^{3}} ) d.) ( 2 e^{x^{2}+3} ) Solve the above problem.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Integration by parts
Exponential functions
Formulas
Integration by parts formula: $\int u \, dv = uv - \int v \, du$
Theorems
-
Suitable Grade Level
Advanced High School / College