Math Problem Statement

  1. Given : ( \int 6 x^{3} e^{x^{2}+3} d x ). Using integration by parts ( \left(\int u d v=u v-\int v d u\right) ) and letting ( u=f(x) ), ( d v=3 g(x) d x ), find ( h(x) ) if ( \int v d u=h(x)+C ) a.) ( 6 e^{x^{2}+3} ) b.) ( 3 e^{-3} e^{x^{2}} ) c.) ( \frac{3 e^{x^{2}+6}}{e^{3}} ) d.) ( 2 e^{x^{2}+3} ) Solve the above problem.

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration by parts
Exponential functions

Formulas

Integration by parts formula: $\int u \, dv = uv - \int v \, du$

Theorems

-

Suitable Grade Level

Advanced High School / College