Math Problem Statement

integral ((1/square root(9+64x^2)) dx

Solution

To solve the integral 19+64x2dx\int \frac{1}{\sqrt{9 + 64x^2}} \, dx, we can use a trigonometric substitution method.

Steps to Solve:

  1. Identify the substitution: The integral has the form 1a2+b2x2dx\int \frac{1}{\sqrt{a^2 + b^2x^2}} \, dx, which suggests the substitution x=abtan(θ)x = \frac{a}{b} \tan(\theta), where a=3a = 3 and b=8b = 8.

    Set x=38tan(θ)x = \frac{3}{8} \tan(\theta).

  2. Compute the differential: dx=38sec2(θ)dθdx = \frac{3}{8} \sec^2(\theta) \, d\theta

  3. Substitute into the integral: Substitute x=38tan(θ)x = \frac{3}{8} \tan(\theta) and dx=38sec2(θ)dθdx = \frac{3}{8} \sec^2(\theta) \, d\theta into the integral: 19+64(38tan(θ))238sec2(θ)dθ\int \frac{1}{\sqrt{9 + 64\left(\frac{3}{8} \tan(\theta)\right)^2}} \cdot \frac{3}{8} \sec^2(\theta) \, d\theta

    Simplify the expression inside the square root: 9+64(964tan2(θ))=9+9tan2(θ)=31+tan2(θ)=3sec(θ)\sqrt{9 + 64\left(\frac{9}{64} \tan^2(\theta)\right)} = \sqrt{9 + 9 \tan^2(\theta)} = 3\sqrt{1 + \tan^2(\theta)} = 3\sec(\theta) So the integral becomes: 13sec(θ)38sec2(θ)dθ=18sec(θ)dθ\int \frac{1}{3\sec(\theta)} \cdot \frac{3}{8} \sec^2(\theta) \, d\theta = \int \frac{1}{8} \sec(\theta) \, d\theta

  4. Integrate: The integral of sec(θ)\sec(\theta) is known: sec(θ)dθ=lnsec(θ)+tan(θ)+C\int \sec(\theta) \, d\theta = \ln|\sec(\theta) + \tan(\theta)| + C Thus, the integral becomes: 18lnsec(θ)+tan(θ)+C\frac{1}{8} \ln|\sec(\theta) + \tan(\theta)| + C

  5. Substitute back: Since x=38tan(θ)x = \frac{3}{8} \tan(\theta), tan(θ)=8x3\tan(\theta) = \frac{8x}{3}, and sec(θ)=1+tan2(θ)=1+(8x3)2=9+64x23\sec(\theta) = \sqrt{1 + \tan^2(\theta)} = \sqrt{1 + \left(\frac{8x}{3}\right)^2} = \frac{\sqrt{9 + 64x^2}}{3}, the final answer is: 18ln9+64x23+8x3+C\frac{1}{8} \ln\left|\frac{\sqrt{9 + 64x^2}}{3} + \frac{8x}{3}\right| + C

This is the solution to the integral.

Would you like more details or have any questions about the steps? Here are some related questions you might find interesting:

  1. How do we solve integrals using trigonometric substitution in general?
  2. What is the general form of integrals involving a2+b2x2\sqrt{a^2 + b^2x^2}?
  3. What are the common trigonometric identities used in calculus?
  4. Can you explain the integration of sec(θ)\sec(\theta) in more detail?
  5. How do we handle integrals that don't easily fit common forms?

Tip: When dealing with square roots in integrals, look out for patterns that suggest trigonometric substitution. This can simplify the problem significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Substitution

Formulas

Trigonometric substitution formula: x = a/b * tan(theta)

Theorems

Integral of sec(theta)

Suitable Grade Level

Grades 11-12