Math Problem Statement

F(x)=ax+b and g(x)=1-x+x^2 and if gof=9x^2+9x+3 determine a and b

Solution

We are given the following functions and their composition:

  • f(x)=ax+bf(x) = ax + b
  • g(x)=1x+x2g(x) = 1 - x + x^2
  • g(f(x))=9x2+9x+3g(f(x)) = 9x^2 + 9x + 3

The goal is to determine aa and bb.

Step 1: Compute g(f(x))g(f(x))

First, substitute f(x)=ax+bf(x) = ax + b into g(x)g(x). Since g(x)=1x+x2g(x) = 1 - x + x^2, we get:

g(f(x))=1(ax+b)+(ax+b)2g(f(x)) = 1 - (ax + b) + (ax + b)^2

Now expand each term:

g(f(x))=1axb+(ax+b)2g(f(x)) = 1 - ax - b + (ax + b)^2

For the square term (ax+b)2(ax + b)^2, use the formula (p+q)2=p2+2pq+q2(p + q)^2 = p^2 + 2pq + q^2:

(ax+b)2=a2x2+2abx+b2(ax + b)^2 = a^2x^2 + 2abx + b^2

Substituting this back into the equation for g(f(x))g(f(x)), we have:

g(f(x))=1axb+a2x2+2abx+b2g(f(x)) = 1 - ax - b + a^2x^2 + 2abx + b^2

Simplify the expression:

g(f(x))=a2x2+(2aba)x+(1b+b2)g(f(x)) = a^2x^2 + (2ab - a)x + (1 - b + b^2)

Step 2: Set g(f(x))g(f(x)) equal to 9x2+9x+39x^2 + 9x + 3

We are told that g(f(x))=9x2+9x+3g(f(x)) = 9x^2 + 9x + 3. So, equating the expressions for g(f(x))g(f(x)):

a2x2+(2aba)x+(1b+b2)=9x2+9x+3a^2x^2 + (2ab - a)x + (1 - b + b^2) = 9x^2 + 9x + 3

Step 3: Compare coefficients

Now, compare the coefficients of x2x^2, xx, and the constant terms on both sides:

  1. Coefficient of x2x^2:
    a2=9a^2 = 9
    Solving this gives a=3a = 3 or a=3a = -3.

  2. Coefficient of xx:
    2aba=92ab - a = 9

  3. Constant term:
    1b+b2=31 - b + b^2 = 3

Step 4: Solve for bb

Let’s first solve for bb by examining the constant term equation:

1b+b2=31 - b + b^2 = 3 b2b2=0b^2 - b - 2 = 0

This is a quadratic equation, and we can solve it using the quadratic formula:

b=(1)±(1)24(1)(2)2(1)b = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-2)}}{2(1)} b=1±1+82b = \frac{1 \pm \sqrt{1 + 8}}{2} b=1±32b = \frac{1 \pm 3}{2}

So, b=2b = 2 or b=1b = -1.

Step 5: Solve for aa

Now, let’s substitute these values of bb into the equation for the coefficient of xx:

2aba=92ab - a = 9

Case 1: a=3a = 3

  • If b=2b = 2: 2(3)(2)3=9(True)2(3)(2) - 3 = 9 \quad \text{(True)} So, a=3a = 3 and b=2b = 2 is a valid solution.

  • If b=1b = -1: 2(3)(1)3=9(False)2(3)(-1) - 3 = -9 \quad \text{(False)} So, b=1b = -1 does not work with a=3a = 3.

Case 2: a=3a = -3

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Function Composition
Quadratic Equations

Formulas

Function composition: (g ∘ f)(x) = g(f(x))
Quadratic equation formula: ax^2 + bx + c = 0
Expanding binomials: (p + q)^2 = p^2 + 2pq + q^2

Theorems

Quadratic formula
Coefficient comparison method

Suitable Grade Level

Grades 10-12