Math Problem Statement

if 2^x=3^y=6^z find 1/x+1/y+1/z

Solution

Given the equation 2x=3y=6z=k2^x = 3^y = 6^z = k, where kk is some constant, we need to find the value of 1x+1y+1z\frac{1}{x} + \frac{1}{y} + \frac{1}{z}.

  1. Express in terms of kk:

    • 2x=k2^x = k implies x=logklog2x = \frac{\log k}{\log 2}
    • 3y=k3^y = k implies y=logklog3y = \frac{\log k}{\log 3}
    • 6z=k6^z = k implies z=logklog6z = \frac{\log k}{\log 6}
  2. Find 1x\frac{1}{x}, 1y\frac{1}{y}, and 1z\frac{1}{z}:

    • 1x=log2logk\frac{1}{x} = \frac{\log 2}{\log k}
    • 1y=log3logk\frac{1}{y} = \frac{\log 3}{\log k}
    • 1z=log6logk\frac{1}{z} = \frac{\log 6}{\log k}
  3. Sum up 1x+1y+1z\frac{1}{x} + \frac{1}{y} + \frac{1}{z}:

    1x+1y+1z=log2logk+log3logk+log6logk\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{\log 2}{\log k} + \frac{\log 3}{\log k} + \frac{\log 6}{\log k}

    This can be factored as:

    log2+log3+log6logk\frac{\log 2 + \log 3 + \log 6}{\log k}

    Using the logarithm property logab=loga+logb\log ab = \log a + \log b and noting that log6=log(2×3)=log2+log3\log 6 = \log (2 \times 3) = \log 2 + \log 3:

    log2+log3+log6=log2+log3+(log2+log3)=2(log2+log3)\log 2 + \log 3 + \log 6 = \log 2 + \log 3 + (\log 2 + \log 3) = 2(\log 2 + \log 3)

  4. Conclusion:

    Since the numerator simplifies to 2(log2+log3)2(\log 2 + \log 3), and the denominator is logk\log k:

    1x+1y+1z=2(log2+log3)logk\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{2(\log 2 + \log 3)}{\log k}

    Given that logk=log6z=zlog6=z(log2+log3)\log k = \log 6^z = z\log 6 = z(\log 2 + \log 3), the expression simplifies further:

    1x+1y+1z=2(log2+log3)z(log2+log3)=2z\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{2(\log 2 + \log 3)}{z(\log 2 + \log 3)} = \frac{2}{z}

Finally, substitute ( z

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponentiation
Logarithms

Formulas

Logarithm properties
Exponential equations

Theorems

-

Suitable Grade Level

Advanced High School and Above