Solution
Given the equation 2x=3y=6z=k, where k is some constant, we need to find the value of x1+y1+z1.
-
Express in terms of k:
- 2x=k implies x=log2logk
- 3y=k implies y=log3logk
- 6z=k implies z=log6logk
-
Find x1, y1, and z1:
- x1=logklog2
- y1=logklog3
- z1=logklog6
-
Sum up x1+y1+z1:
x1+y1+z1=logklog2+logklog3+logklog6
This can be factored as:
logklog2+log3+log6
Using the logarithm property logab=loga+logb and noting that log6=log(2×3)=log2+log3:
log2+log3+log6=log2+log3+(log2+log3)=2(log2+log3)
-
Conclusion:
Since the numerator simplifies to 2(log2+log3), and the denominator is logk:
x1+y1+z1=logk2(log2+log3)
Given that logk=log6z=zlog6=z(log2+log3), the expression simplifies further:
x1+y1+z1=z(log2+log3)2(log2+log3)=z2
Finally, substitute ( z