Math Problem Statement

write all questions in proper manner

Write all questions in a proper manner based on the image provided.

Solution

Here is a proper formatting of the differential equations provided in the uploaded image:


Solve the following differential equations:

  1. (x2+1)dydx+4xy=1x2+1(x^2 + 1)\frac{dy}{dx} + 4xy = \frac{1}{x^2 + 1}

  2. (3x2y4+4xy)dx+(2x3y3x2)dy=0(3x^2y^4 + 4xy)dx + (2x^3y^3 - x^2)dy = 0

  3. dydx+xsin2y=x2cos2y\frac{dy}{dx} + x \sin^2 y = x^2 \cos^2 y

  4. (1x2)dydx+2xy=x1x2(1 - x^2)\frac{dy}{dx} + 2xy = x \sqrt{1 - x^2}

  5. (xy2siny+xcosy)dx+(x2ysinyxcosy)dy=0(xy^2 \sin y + x \cos y)dx + (x^2 y \sin y - x \cos y)dy = 0

  6. (2x3+xy3)dy+(x2y+y4)dx=0(2x^3 + xy^3)dy + (x^2y + y^4)dx = 0

  7. (xy2ex3)dxx2dy=0(xy^2 - e^{x^3})dx - x^2dy = 0

  8. (D4+xD2+1)y=x2cosx(D^4 + xD^2 + 1)y = x^2 \cos x

  9. (3x+2)2d2ydx2+(8x+6)dydx36y=3x2+4x+1(3x + 2)^2\frac{d^2y}{dx^2} + (8x + 6)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1

  10. d2ydx2y=exsin(ex)+cos(ex)[MOVOP]\frac{d^2y}{dx^2} - y = e^{-x} \sin(e^{-x}) + \cos(e^{-x}) \quad [\text{MOVOP}]

  11. d2ydx2+3dydx+2y=ex\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^x

  12. d2ydx2+4y=tan2x[MOVOP]\frac{d^2y}{dx^2} + 4y = \tan 2x \quad [\text{MOVOP}]

  13. x2d2ydx2+xdydx+y=logxsin(logx)x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = \log x \cdot \sin(\log x)

  14. dxdt+2y=et,dydt2x=et[Simultaneous]\frac{dx}{dt} + 2y = e^t, \quad \frac{dy}{dt} - 2x = e^t \quad [\text{Simultaneous}]


Would you like a solution to any particular question?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differential Equations
First-order Differential Equations
Second-order Differential Equations
Simultaneous Equations

Formulas

General solution methods for differential equations
Separation of variables
Linear operator techniques
Integrating factor method

Theorems

Linear Differential Equation Theory
Existence and Uniqueness Theorem

Suitable Grade Level

College-level Mathematics