Math Problem Statement

(-5+x)y'' + (1+4x)y' +3y = 0, y(0) = 3, y'(0)=4 Assuming the solution can be represented by a power series y=\sum_{n=0}^{\infty}a_nx^n

Find the first and second derivatives of y.

y' = \sum_{n=1}^{\infty}na_nx^(n-1) y'' = \sum_{n=2}^{\infty}n(n-1)a_nx^(n-2)

\sum_{n=2}^{\infty}\left(-5+x\right)n\left(n-1\right)a_nx^{n-2} + \sum_{n=1}^{\infty}na_nx^(n-1)+4na_nx^2 + \sum_{n=0}^{\infty}-2a_nx^n = 0

After shifting the summation indices to start from the same values and have the same exponent of x, combine the summations into a single summation. \sum_{n=0}^{\infty} ? x^n=0

Solution

We are tasked with combining the given summations into a single summation where the power of xx is the same and all indices start from n=0n = 0. Let us break this down systematically.


Given:

We already know: y=n=0anxn,y=n=1nanxn1,y=n=2n(n1)anxn2.y = \sum_{n=0}^\infty a_n x^n, \quad y' = \sum_{n=1}^\infty n a_n x^{n-1}, \quad y'' = \sum_{n=2}^\infty n(n-1)a_n x^{n-2}.

Substitute these derivatives into the differential equation:

(5+x)y+(1+4x)y+3y=0.(-5 + x)y'' + (1 + 4x)y' + 3y = 0.

Expanding term-by-term:

1. For (5+x)y(-5 + x)y'':

(5+x)y=5n=2n(n1)anxn2+n=2n(n1)anxn1.(-5 + x)y'' = -5 \sum_{n=2}^\infty n(n-1)a_n x^{n-2} + \sum_{n=2}^\infty n(n-1)a_n x^{n-1}.

2. For (1+4x)y(1 + 4x)y':

(1+4x)y=n=1nanxn1+4n=1nanxn.(1 + 4x)y' = \sum_{n=1}^\infty n a_n x^{n-1} + 4\sum_{n=1}^\infty n a_n x^n.

3. For 3y3y:

3y=n=03anxn.3y = \sum_{n=0}^\infty 3a_n x^n.


Adjust indices to match powers of xnx^n:

1. (5+x)y(-5 + x)y'':

Split into two parts:

  • First part: 5n=2n(n1)anxn2-5 \sum_{n=2}^\infty n(n-1)a_n x^{n-2}

    Shift index: Let m=n2m = n - 2, so n=m+2n = m + 2: 5n=2n(n1)anxn2=5m=0(m+2)(m+1)am+2xm.-5 \sum_{n=2}^\infty n(n-1)a_n x^{n-2} = -5 \sum_{m=0}^\infty (m+2)(m+1)a_{m+2} x^m.

  • Second part: n=2n(n1)anxn1\sum_{n=2}^\infty n(n-1)a_n x^{n-1}

    Shift index: Let m=n1m = n - 1, so n=m+1n = m + 1: n=2n(n1)anxn1=m=1m(m+1)am+1xm.\sum_{n=2}^\infty n(n-1)a_n x^{n-1} = \sum_{m=1}^\infty m(m+1)a_{m+1} x^m.

Combining, we have: (5+x)y=5m=0(m+2)(m+1)am+2xm+m=1m(m+1)am+1xm.(-5 + x)y'' = -5 \sum_{m=0}^\infty (m+2)(m+1)a_{m+2} x^m + \sum_{m=1}^\infty m(m+1)a_{m+1} x^m.

2. (1+4x)y(1 + 4x)y':

Split into two parts:

  • First part: n=1nanxn1\sum_{n=1}^\infty n a_n x^{n-1}

    Shift index: Let m=n1m = n - 1, so n=m+1n = m + 1: n=1nanxn1=m=0(m+1)am+1xm.\sum_{n=1}^\infty n a_n x^{n-1} = \sum_{m=0}^\infty (m+1)a_{m+1} x^m.

  • Second part: 4n=1nanxn4\sum_{n=1}^\infty n a_n x^n

    No index shift is needed: 4n=1nanxn=4m=1mamxm.4\sum_{n=1}^\infty n a_n x^n = 4\sum_{m=1}^\infty m a_m x^m.

Combining, we have: (1+4x)y=m=0(m+1)am+1xm+4m=1mamxm.(1 + 4x)y' = \sum_{m=0}^\infty (m+1)a_{m+1} x^m + 4\sum_{m=1}^\infty m a_m x^m.

3. 3y3y:

No index shift is needed: 3y=n=03anxn.3y = \sum_{n=0}^\infty 3a_n x^n.


Combine all terms into a single summation:

Now we combine all terms into a single summation. Grouping terms for xmx^m, we get:

Terms for xmx^m:

  • From (5+x)y(-5 + x)y'': 5(m+2)(m+1)am+2+m(m+1)am+1.-5(m+2)(m+1)a_{m+2} + m(m+1)a_{m+1}.

  • From (1+4x)y(1 + 4x)y': (m+1)am+1+4mam.(m+1)a_{m+1} + 4m a_m.

  • From 3y3y: 3am.3a_m.

Combined summation:

m=0[5(m+2)(m+1)am+2+m(m+1)am+1+(m+1)am+1+4mam+3am]xm=0.\sum_{m=0}^\infty \left[ -5(m+2)(m+1)a_{m+2} + m(m+1)a_{m+1} + (m+1)a_{m+1} + 4m a_m + 3a_m \right]x^m = 0.

Simplify the coefficient of xmx^m: m=0[5(m+2)(m+1)am+2+(m2+2m+1)am+1+(4m+3)am]xm=0.\sum_{m=0}^\infty \left[ -5(m+2)(m+1)a_{m+2} + (m^2 + 2m + 1)a_{m+1} + (4m + 3)a_m \right]x^m = 0.

For this to hold for all mm, the coefficient of xmx^m must be zero: 5(m+2)(m+1)am+2+(m2+2m+1)am+1+(4m+3)am=0.-5(m+2)(m+1)a_{m+2} + (m^2 + 2m + 1)a_{m+1} + (4m + 3)a_m = 0.


Recurrence relation:

The recurrence relation is: am+2=(m2+2m+1)am+1+(4m+3)am5(m+2)(m+1).a_{m+2} = \frac{(m^2 + 2m + 1)a_{m+1} + (4m + 3)a_m}{5(m+2)(m+1)}.

This allows us to compute am+2a_{m+2} iteratively.


Would you like to compute specific terms or need further clarification?

Related Questions:

  1. What are the first four terms of the solution using the recurrence relation?
  2. How does the power series solution relate to Frobenius method?
  3. What is the radius of convergence of the series y=anxny = \sum a_nx^n?
  4. Can this recurrence relation be solved symbolically for ana_n?
  5. What happens if different initial conditions are applied?

Tip:

When shifting indices in summations, always verify that the powers of xx are consistent before combining terms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Power Series Representation
Differential Equations
Index Shifting in Summations

Formulas

y = ∑a_nx^n
y' = ∑n*a_n*x^(n-1)
y'' = ∑n(n-1)*a_n*x^(n-2)
Recurrence relation for coefficients in series solutions

Theorems

Power Series Solution for Linear Differential Equations
Frobenius Method for Solving Differential Equations

Suitable Grade Level

Undergraduate Mathematics (Calculus and Differential Equations)