Math Problem Statement

Evaluate the following integral using U-substitution: ∫₀^(π/4) [sin(2x) / (1 + cos(2x))] dx

Solution

To solve the given definite integral using U-substitution, let's follow these steps:

Problem

Evaluate the following integral using U-substitution: 0π4sin(2x)1+cos(2x)dx\int_0^{\frac{\pi}{4}} \frac{\sin(2x)}{1 + \cos(2x)} \, dx

Solution

  1. Substitute:
    Let u=1+cos(2x)u = 1 + \cos(2x).

  2. Differentiate:
    Find dudu.
    Since ddxcos(2x)=2sin(2x)\frac{d}{dx} \cos(2x) = -2 \sin(2x), we have: du=2sin(2x)dx    sin(2x)dx=12dudu = -2 \sin(2x) \, dx \implies \sin(2x) \, dx = -\frac{1}{2} \, du

  3. Change Limits:
    When x=0x = 0:
    u=1+cos(0)=2u = 1 + \cos(0) = 2
    When x=π4x = \frac{\pi}{4}:
    u=1+cos(2×π4)=1+cos(π2)=1u = 1 + \cos\left(2 \times \frac{\pi}{4}\right) = 1 + \cos\left(\frac{\pi}{2}\right) = 1

  4. Rewrite the Integral:
    Substitute into the integral: 21sin(2x)1+cos(2x)dx=2112duu\int_{2}^{1} \frac{\sin(2x)}{1 + \cos(2x)} \, dx = \int_{2}^{1} \frac{-\frac{1}{2} \, du}{u}

  5. Simplify and Integrate:
    =12211udu=12[lnu]21= -\frac{1}{2} \int_{2}^{1} \frac{1}{u} \, du = -\frac{1}{2} \left[ \ln |u| \right]_{2}^{1}

  6. Evaluate the Definite Integral: 12(ln(1)ln(2))=12(0ln(2))=ln(2)2-\frac{1}{2} \left( \ln(1) - \ln(2) \right) = -\frac{1}{2} (0 - \ln(2)) = \frac{\ln(2)}{2}

Final Answer

0π4sin(2x)1+cos(2x)dx=ln(2)2\int_0^{\frac{\pi}{4}} \frac{\sin(2x)}{1 + \cos(2x)} \, dx = \frac{\ln(2)}{2}

Would you like more details or have any questions about the solution?

Related Questions

  1. How do you choose the right substitution for an integral?
  2. What are the common techniques for integrating trigonometric functions?
  3. Can U-substitution be used for indefinite integrals as well?
  4. How do you handle integrals that involve squared trigonometric functions?
  5. What are some alternative methods for evaluating this integral?

Tip

Always check the new limits of integration after substitution, as they correspond to the new variable uu.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
U-Substitution
Trigonometric Integration

Formulas

u = 1 + cos(2x)
du = -2 sin(2x) dx
∫ du/u = ln|u|

Theorems

Fundamental Theorem of Calculus
U-Substitution Rule for Definite Integrals

Suitable Grade Level

College/University level (Calculus II)