Math Problem Statement

Solve the following arithmetic problems with fractions and decimals: 1) 3 * (1/9) + 0.3 2) (2/5) * 2 - 0.5 3) 1.5 - 3 * (5/12) 4) 2 * (7/15) * 3 - (1/5) 5) (1/6) + 6 * (1/12) 6) (5/2) * (2/3) * 15 - 3 * (2/5)

Solution

I'll solve each exercise step-by-step.

1) 319+0.33 \cdot \frac{1}{9} + 0.3

  • 319=39=133 \cdot \frac{1}{9} = \frac{3}{9} = \frac{1}{3}.
  • Convert 0.30.3 to a fraction: 0.3=3100.3 = \frac{3}{10}.
  • Adding: 13+310=10+930=1930\frac{1}{3} + \frac{3}{10} = \frac{10 + 9}{30} = \frac{19}{30}.

2) 2520.5\frac{2}{5} \cdot 2 - 0.5

  • 252=45\frac{2}{5} \cdot 2 = \frac{4}{5}.
  • 0.5=120.5 = \frac{1}{2}.
  • Subtracting: 4512=8510=310\frac{4}{5} - \frac{1}{2} = \frac{8 - 5}{10} = \frac{3}{10}.

3) 1.535121.5 - 3 \cdot \frac{5}{12}

  • 1.5=321.5 = \frac{3}{2}.
  • 3512=1512=543 \cdot \frac{5}{12} = \frac{15}{12} = \frac{5}{4}.
  • Subtracting: 3254=654=14\frac{3}{2} - \frac{5}{4} = \frac{6 - 5}{4} = \frac{1}{4}.

4) 27153152 \cdot \frac{7}{15} \cdot 3 - \frac{1}{5}

  • 2715=14152 \cdot \frac{7}{15} = \frac{14}{15}.
  • 14153=4215=145\frac{14}{15} \cdot 3 = \frac{42}{15} = \frac{14}{5}.
  • Subtracting: 14515=135\frac{14}{5} - \frac{1}{5} = \frac{13}{5}.

5) 16+6112\frac{1}{6} + 6 \cdot \frac{1}{12}

  • 6112=612=126 \cdot \frac{1}{12} = \frac{6}{12} = \frac{1}{2}.
  • Adding: 16+12=1+36=46=23\frac{1}{6} + \frac{1}{2} = \frac{1 + 3}{6} = \frac{4}{6} = \frac{2}{3}.

6) 522315325\frac{5}{2} \cdot \frac{2}{3} \cdot 15 - 3 \cdot \frac{2}{5}

  • 5223=5223=53\frac{5}{2} \cdot \frac{2}{3} = \frac{5 \cdot 2}{2 \cdot 3} = \frac{5}{3}.
  • 5315=25\frac{5}{3} \cdot 15 = 25.
  • 325=653 \cdot \frac{2}{5} = \frac{6}{5}.
  • Subtracting: 2565=12565=119525 - \frac{6}{5} = \frac{125 - 6}{5} = \frac{119}{5}.

Let me know if you need further details or clarification on any of these steps.

Here are five related questions:

  1. How do you convert a decimal to a fraction?
  2. What is the process for adding fractions with different denominators?
  3. How do you simplify fractions in multiplication problems?
  4. How can you handle mixed numbers in similar problems?
  5. What steps can you take to convert a fraction to a decimal?

Tip: When adding or subtracting fractions, always find a common denominator for easier calculation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Arithmetic Operations
Fractions
Decimals
Multiplication
Addition
Subtraction

Formulas

Multiplication of fractions: (a/b) * (c/d) = (a * c) / (b * d)
Addition/Subtraction of fractions with different denominators: find a common denominator
Decimal to fraction conversion

Theorems

Properties of fractions
Conversion between decimals and fractions

Suitable Grade Level

Grades 5-7