Math Problem Statement

|2-5|-(6/2+1)^2

Solution

Let's solve the given expression step by step:

The expression is:

25(62+1)2|2 - 5| - \left( \frac{6}{2} + 1 \right)^2

Step 1: Simplify the absolute value part

First, calculate the absolute value:

25=3=3|2 - 5| = |-3| = 3

So, the expression becomes:

3(62+1)23 - \left( \frac{6}{2} + 1 \right)^2

Step 2: Simplify inside the parentheses

Next, simplify 62+1\frac{6}{2} + 1:

62=3\frac{6}{2} = 3

3+1=43 + 1 = 4

So now, the expression is:

3423 - 4^2

Step 3: Square the 4

42=164^2 = 16

Step 4: Final calculation

Now subtract:

316=133 - 16 = -13

Final Answer:

13\boxed{-13}

Would you like further clarification on any step? Here are some related problems for practice:

  1. 712(84+2)2|7 - 12| - \left(\frac{8}{4} + 2\right)^2
  2. 49(105+3)2|4 - 9| - \left(\frac{10}{5} + 3\right)^2
  3. 53(93+4)2|5 - 3| - \left(\frac{9}{3} + 4\right)^2
  4. 1015(126+5)2|10 - 15| - \left(\frac{12}{6} + 5\right)^2
  5. 82(147+6)2|8 - 2| - \left(\frac{14}{7} + 6\right)^2

Tip: Always solve operations inside parentheses and apply exponents before handling addition or subtraction outside.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Absolute Value
Order of Operations
Exponents
Basic Arithmetic

Formulas

Absolute Value: |a - b|
Order of Operations: PEMDAS (Parentheses, Exponents, Multiplication/Division, Addition/Subtraction)

Theorems

No specific theorems

Suitable Grade Level

Grades 6-8