Math Problem Statement

Worksheet on Exponents & Radicals(1).docx

44.62 KB

Please solve the whole worksheet sheet in detail step by step

Solution

Let's break down and solve the problems from the worksheet step by step.


Part 1: Evaluating Exponential Expressions

a) 343^{-4}

Solution:

Using the rule an=1ana^{-n} = \frac{1}{a^n}: 34=134=1813^{-4} = \frac{1}{3^4} = \frac{1}{81}

b) 525^{-2}

Solution:

Similarly, applying an=1ana^{-n} = \frac{1}{a^n}: 52=152=1255^{-2} = \frac{1}{5^2} = \frac{1}{25}

c) 42×234^{-2} \times 2^3

Solution:

42=142=1164^{-2} = \frac{1}{4^2} = \frac{1}{16} 23=82^3 = 8 Multiplying them together: 116×8=816=12\frac{1}{16} \times 8 = \frac{8}{16} = \frac{1}{2}

d) 253-25^{-3}

Solution:

Applying the rule for negative exponents: 253=1253=115625-25^{-3} = -\frac{1}{25^3} = -\frac{1}{15625}


Part 2: Simplifying Expressions

a) a8×a12a7\frac{a^8 \times a^{-12}}{a^7}

Solution:

Use the rule am×an=am+na^m \times a^n = a^{m+n} for multiplication and aman=amn\frac{a^m}{a^n} = a^{m-n} for division. a8×a12=a8+(12)=a4a^8 \times a^{-12} = a^{8 + (-12)} = a^{-4} Now divide by a7a^7: a4a7=a47=a11\frac{a^{-4}}{a^7} = a^{-4-7} = a^{-11} Final answer: a11a^{-11}

b) 2x24y38x12y32\frac{2 x^{-2} 4 y^{-3}}{8 x^{12} y^{32}}

Solution:

  1. Simplify coefficients: 2×48=1\frac{2 \times 4}{8} = 1.
  2. Simplify exponents for xx using xm/xn=xmnx^m / x^n = x^{m-n}: x212=x14x^{-2 - 12} = x^{-14}
  3. Simplify exponents for yy: y332=y35y^{-3 - 32} = y^{-35} Final answer: x14y35x^{-14} y^{-35}

c) 81a4b8143a2b33\frac{81 a^{-4} b^8}{143 a^2 b^{-33}}

Solution:

  1. Coefficients remain: 81143\frac{81}{143}.
  2. Simplify exponents for aa: a42=a6a^{-4 - 2} = a^{-6}
  3. Simplify exponents for bb: b8(33)=b8+33=b41b^{8 - (-33)} = b^{8 + 33} = b^{41} Final answer: [ \frac{81}{143} a^{-6

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Radicals
Algebraic Simplification

Formulas

a^{-n} = \frac{1}{a^n}
a^m \times a^n = a^{m+n}
\frac{a^m}{a^n} = a^{m-n}

Theorems

Laws of Exponents

Suitable Grade Level

Grades 9-10