Math Problem Statement

Find the six circular function of -405 degrees

Solution

To find the six circular (or trigonometric) functions of 405-405^\circ, let's start by simplifying the angle to an equivalent one within the standard range 0θ<3600^\circ \leq \theta < 360^\circ.

Step 1: Simplify 405-405^\circ

  1. Since 405-405^\circ is a negative angle, add 360360^\circ repeatedly until the angle falls within the range of 00^\circ to 360360^\circ.

405+360=45-405^\circ + 360^\circ = -45^\circ 45+360=315-45^\circ + 360^\circ = 315^\circ

Thus, 405-405^\circ is equivalent to 315315^\circ.

Step 2: Determine the Six Trigonometric Functions of 315315^\circ

Since 315315^\circ is in the fourth quadrant, we know:

  • Sine is negative
  • Cosine is positive
  • Tangent is negative

Now, using 315=36045315^\circ = 360^\circ - 45^\circ, we find:

  1. Sine (sin(315)\sin(315^\circ)): sin(315)=sin(45)=22\sin(315^\circ) = -\sin(45^\circ) = -\frac{\sqrt{2}}{2}

  2. Cosine (cos(315)\cos(315^\circ)): cos(315)=cos(45)=22\cos(315^\circ) = \cos(45^\circ) = \frac{\sqrt{2}}{2}

  3. Tangent (tan(315)\tan(315^\circ)): tan(315)=tan(45)=1\tan(315^\circ) = -\tan(45^\circ) = -1

  4. Cosecant (csc(315)\csc(315^\circ)): csc(315)=1sin(315)=122=2\csc(315^\circ) = \frac{1}{\sin(315^\circ)} = -\frac{1}{\frac{\sqrt{2}}{2}} = -\sqrt{2}

  5. Secant (sec(315)\sec(315^\circ)): sec(315)=1cos(315)=122=2\sec(315^\circ) = \frac{1}{\cos(315^\circ)} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2}

  6. Cotangent (cot(315)\cot(315^\circ)): cot(315)=1tan(315)=1\cot(315^\circ) = \frac{1}{\tan(315^\circ)} = -1

Summary of the Six Trigonometric Functions of 405-405^\circ (or 315315^\circ):

  • sin(405)=22\sin(-405^\circ) = -\frac{\sqrt{2}}{2}
  • cos(405)=22\cos(-405^\circ) = \frac{\sqrt{2}}{2}
  • tan(405)=1\tan(-405^\circ) = -1
  • csc(405)=2\csc(-405^\circ) = -\sqrt{2}
  • sec(405)=2\sec(-405^\circ) = \sqrt{2}
  • cot(405)=1\cot(-405^\circ) = -1

Would you like a deeper breakdown or clarification on any of these functions?


  1. What are the trigonometric functions of 45-45^\circ and why are they equivalent to those of 315315^\circ?
  2. How can trigonometric identities be applied to angles larger than 360360^\circ or smaller than 00^\circ?
  3. What is the significance of the quadrant in determining the sign of trigonometric functions?
  4. How can we verify these values on the unit circle?
  5. Why is it useful to reduce angles to within the 00^\circ to 360360^\circ range?

Tip: For angles greater than 360360^\circ or less than 00^\circ, use angle reduction by adding or subtracting 360360^\circ until within the standard range for quicker function evaluation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Reduction
Quadrants in the Unit Circle

Formulas

Sine: sin(θ) = opposite/hypotenuse
Cosine: cos(θ) = adjacent/hypotenuse
Tangent: tan(θ) = opposite/adjacent
Cosecant: csc(θ) = 1/sin(θ)
Secant: sec(θ) = 1/cos(θ)
Cotangent: cot(θ) = 1/tan(θ)

Theorems

Angle Reduction Theorem (Modulo 360)
Quadrant Sign Rules

Suitable Grade Level

Grades 10-12