Math Problem Statement

Find the six circular function of 240 degrees

Solution

To find the six trigonometric (circular) functions of 240240^\circ, let's start by noting that 240240^\circ is in the third quadrant, where both sine and cosine are negative.

Step-by-Step Solution:

  1. Determine the reference angle:

    • The reference angle for 240240^\circ is 240180=60240^\circ - 180^\circ = 60^\circ.
  2. Evaluate the trigonometric functions:

    • Sine and cosine are negative in the third quadrant.
    • Tangent and cotangent are positive in the third quadrant.

Using these values for 6060^\circ: sin(60)=32,cos(60)=12,tan(60)=3\sin(60^\circ) = \frac{\sqrt{3}}{2}, \quad \cos(60^\circ) = \frac{1}{2}, \quad \tan(60^\circ) = \sqrt{3}

Calculating the Six Functions:

  1. Sine: sin(240)=sin(60)=32\sin(240^\circ) = -\sin(60^\circ) = -\frac{\sqrt{3}}{2}

  2. Cosine: cos(240)=cos(60)=12\cos(240^\circ) = -\cos(60^\circ) = -\frac{1}{2}

  3. Tangent: tan(240)=sin(240)cos(240)=3212=3\tan(240^\circ) = \frac{\sin(240^\circ)}{\cos(240^\circ)} = \frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = \sqrt{3}

  4. Cosecant (reciprocal of sine): csc(240)=1sin(240)=132=23=233\csc(240^\circ) = \frac{1}{\sin(240^\circ)} = \frac{1}{-\frac{\sqrt{3}}{2}} = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}

  5. Secant (reciprocal of cosine): sec(240)=1cos(240)=112=2\sec(240^\circ) = \frac{1}{\cos(240^\circ)} = \frac{1}{-\frac{1}{2}} = -2

  6. Cotangent (reciprocal of tangent): cot(240)=1tan(240)=13=33\cot(240^\circ) = \frac{1}{\tan(240^\circ)} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}

Final Answer

The six trigonometric functions of 240240^\circ are:

  • sin(240)=32\sin(240^\circ) = -\frac{\sqrt{3}}{2}
  • cos(240)=12\cos(240^\circ) = -\frac{1}{2}
  • tan(240)=3\tan(240^\circ) = \sqrt{3}
  • csc(240)=233\csc(240^\circ) = -\frac{2\sqrt{3}}{3}
  • sec(240)=2\sec(240^\circ) = -2
  • cot(240)=33\cot(240^\circ) = \frac{\sqrt{3}}{3}

Would you like further explanation on any of these steps?


Related Questions:

  1. What are the six trigonometric functions of 300300^\circ?
  2. How do the signs of trigonometric functions vary in each quadrant?
  3. How can you find the reference angle for any given angle?
  4. What are the values of the trigonometric functions at 120120^\circ?
  5. Why are tangent and cotangent positive in the third quadrant?

Tip:

Always remember that the sign of trigonometric functions depends on the quadrant of the angle, while the reference angle helps find the values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Unit Circle
Reference Angle
Circular Functions

Formulas

sin(θ) = opposite/hypotenuse
cos(θ) = adjacent/hypotenuse
tan(θ) = sin(θ)/cos(θ)
csc(θ) = 1/sin(θ)
sec(θ) = 1/cos(θ)
cot(θ) = 1/tan(θ)

Theorems

Signs of trigonometric functions in different quadrants
Reference angle theorem

Suitable Grade Level

Grades 9-11